Canary Culture: Concepts in Genetics

PART 3
by Tony Bucci
San Pedro, California

Wild Canary
The wild canary (Serinus canarius) was first discovered in the early 1400s inhabiting the Canary Islands, Madeira and the Azores. The wild canary is olive green in color with several black and brown stripes on its back. There is a greenish-yellow strip on his forehead, with the regions above and under the eye, on the sides of the head and on the neck also a greenish yellow. The chief difference between the male and female is that on the breast and abdomen of the female grayish-white color takes the place of the greenish yellow of the male.

The green canary is still being bred by fanciers who know the value of the original color and vigor. Since the 1400s, many mutations have occurred and have been preserved by canary breeders. Most mutations are in the form of new colors. However, some mutations are evident in the form of feather shape and feather arrangement. Color mutations are divided into two groups, the Melanins and the Lipochromes.

The Melanin Canaries
Melanin canaries are dark in appearance. The pigment which colors their feathers is called "melanin." These canaries are not popular as pets, compared to the light colored canaries, because of their drab appearance. But, to the fanciers, melanin canaries are challenging and beautiful. They are more prolific, vigorous, and longer lived. A few years ago I imported several kinds of canaries from Europe. I lost many lipochrome varieties during the quarantine period but the melanin varieties all survived.

The classic melanin group is divided into the following four varieties:
1. Black-brown (green),
2. Agate (green dilute),
3. Brown (cinnamon),
4. Isabel (cinnamon dilute).

The terms in parentheses are old names and still used in some canary circles.

An interesting observation about melanin mutations is that each successive mutation is lighter in color. The black-brown (green) is the darkest of them all, and each successive color appears to be diluted. In appearance, the Isabel is the lightest of them all.

The darkest (black-brown) canary is genetically dominant over all other lighter colors. Next, agate is dominant over brown and Isabel. The last example is the brown being dominant over Isabel. We can visualize each successive mutation as a set of steps. Each time we step down we find the color which is recessive to the previous step. (See Figure 1.)
When You Care for Birds, Choose Mardel.

A complete selection of products for complete bird care.

Rx: Healthier Birds
- **Ornacyn®**: Handy, safe, non-toxic broad spectrum antibiotic for respiratory infections in cage birds.
- **Ornacyn-Plus™**: Treatment for respiratory diseases of pet birds. Controls diarrhea, corrects vitamin deficiencies, relieves stress.
- **Ornacycline™**: Treatment for respiratory and intestinal diseases of pet birds. Fruit flavored, fast dissolving tablets.
- **Furazite™**: Nitrofurazone for birds; broad spectrum Gram-negative antibiotic for treatment of intestinal disorders.
- **Ornalyte™**: Special electrolytes-trace mineral formula (fortified with high potency vitamin complex), for birds under stress.
- **Quell™**: Anesthetic spray relieves skin irritation. Bitter taste discourages picking, promotes healing.

Preventive Care and Appearance
- **OrnaMite™**: Safe, fast-acting formula controls stress-causing mite infestations. Handy tube applicator; contains no hydrocarbons.
- **VitaFlight®**: 13 essential vitamins for pet birds. Fruit flavored powder to add to the drinking water.
- **Ornabac™**: Natural food additive for pet birds. Keeps digestive tract healthy, controls diarrhea, relieves stress.
- **Stay™**: Non-stinging, non-toxic coagulant cream stops bleeding fast after clipping bird nails or beak.
- **Brite N'Shine™**: Spray sheen for dull plumage; relieves dry skin. Purcellin oil encourages preening.
- **WaterGuard™**: Safe, non-toxic ingestible disinfectant for the bird’s water supply. Effective against bacteria, fungi and yeast growth.
- **CageGuard™**: Controls growth of bacteria, viruses and fungi on cages and perches, including wood and plastic.
FLORIDA (continued)
Exotic Bird Club of Florida
Gold Coast Exotic Bird Club, Inc.
Greater Brandon Avian Society
Greater Miami Avicultural Society, Inc.
Jacksonville Avicultural Society, Inc.
Miami Parrot Club, Inc.
Goaia Cage Bird Society, Inc.
Palm County Avicultural Society
Suncoast Avian Society
Sunshine State Cage Bird Society, Inc.
Tropical Cockatiel Club of Miami
West Florida Avian Society, Inc.

ILLINOIS
Greater Chicago Cage Bird Club, Inc.
Heart of Illinois Pet Bird Club
Illini Bird fanciers
McLean County Pet Bird Club
Mid-West Hookbill Club

IOWA
Mid-America Cage Bird Society

KANSAS
Kansas Avicultural Society, Inc.

LOUISIANA
Capital Area Avicultural Society
Gulf South Bird Club

MARYLAND
Baltimore Bird Fanciers, Inc.
Maryland Cage Bird Society, Inc.

MASSACHUSETTS
Berkeley Cage Bird Friends Unlimited
Boston Cockatiel Society, Inc.
Boston Society for Aviculture, Inc.
Exotic Cage Bird Society of New England
Massachusetts Cage Bird Association, Inc.
Western New England Cage Bird Society

MICHIGAN
Ann Arbor Cage Bird Club, Inc.
Great Lakes Avicultural Society
Mid-Michigan Bird Club
Motor City Bird Breeders, Inc.

MINNESOTA
Minnesota Cage Bird Association

MISSOURI
Missouri Cage Bird Association

NEBRASKA
Greater Omaha Cage Bird Society

NEVADA
Las Vegas Avicultural Society

NEW HAMPSHIRE
Birds of a Feather Avicultural Society
New Hampshire Avicultural Society

NEW MEXICO
Flying Feathers Aviculture Society

NEW YORK
Feathered Friends Bird Club
Finger Lakes Cage Bird Association
Greater Rochester Hookbill Association

OHIO
Apple Seed Bird fanciers
Cleveland Cage Bird Society, Inc.
Golden Crested Cage Bird Society
Triad Exotic Bird Club

OKLAHOMA
Bird fanciers of Oklahoma
Oklahoma Cage Bird Society

OREGON
Emerald Exotic Bird Club
Exotic Bird Club of Oregon
Northwest Bird Club
Rose City Exotic Bird Club

Pennsylvania
Central Pennsylvania Cage Bird Club
Delaware Valley Bird Club
Greater Pittsburgh Cage Bird Society
Philadelphia Avicultural Society
York Area Pet Bird Club

TENNESSEE
Greater Memphis Bird Club
Middle Tennessee Cage Bird Club

TEXAS
Dallas Cage Bird Society
Fort Worth Bird Club
Houston Cage Bird Association

Utah
Avicultural Society of Utah

VirginIa
National Capital Bird Club
Parrot Breeders Association
Peninsula Caged Bird Society

Washington
Avicultural Society of Puget Sound
Cascade Canary breeders association

Wisconsin
Milwaukee Bird Society, Ltd.
Wisconsin Cage Bird Club, Inc.

For information about contacting any of these member clubs, please call that club's closest state coordinator. There is a state coordinator listing with phone numbers elsewhere in this publication.
If pairings with other colors are to be used, we simply change the letter accompanying each “X” chromosome. Keep in mind that a capital letter indicates “dominant,” and a small letter indicates “recessive.” See the example in Figure 7 which shows the mating of a male agate to an Isabel hen. The result of this mating is two male agate carriers of Isabel and two agate hens. Did you notice this mating is the same as the mating in Figure 2 except with different colors?

<table>
<thead>
<tr>
<th>COCK</th>
<th>HEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td></td>
</tr>
<tr>
<td>(cock)</td>
<td>(hen)</td>
</tr>
<tr>
<td>XA</td>
<td>XA Y</td>
</tr>
<tr>
<td>(cock)</td>
<td>(hen)</td>
</tr>
<tr>
<td>XA</td>
<td>XA Y</td>
</tr>
</tbody>
</table>

Figure 7

The Lipochrome Canaries

Lipochrome canaries are light in appearance. The agent that colors their feathers is called “lipochrome.” The lipochrome group is divided into the following varieties: 1) yellow, 2) white dominant, 3) white recessive, 4) red orange, 5) mosaic (dimorphic), 6) ivory, 7) rose ivory.

Ivory and rose ivory are the only lipochrome varieties which are sex-linked in character, and are recessive to all other lipochrome varieties. For example, if a yellow male is mated to an ivory hen (see Figure 8), we can see the results of the sex-linked inheritance at work.

<table>
<thead>
<tr>
<th>COCK</th>
<th>HEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td></td>
</tr>
<tr>
<td>(cock)</td>
<td>(hen)</td>
</tr>
<tr>
<td>XY</td>
<td>XY Y</td>
</tr>
<tr>
<td>(cock)</td>
<td>(hen)</td>
</tr>
<tr>
<td>XY</td>
<td>XY Y</td>
</tr>
</tbody>
</table>

Figure 8

I would like to suggest you study the workings of the Punet Square thoroughly. If necessary, read Part 2 of this series of articles where a detailed explanation of the Punet Square was given. Once you understand the Punet Square, a glance at it will reveal the results of the mating in question.

For homework, complete all of the possible matings for agate-Isabel and yellow-ivory, using the Punet Square method.