Effects of Exercise on Reproduction in Budgerigars
(Melopsittacus undulatus)

by Kenneth R. Welle
Champaign, Illinois

In the National Research Council's Guide for the Care and Use of Laboratory Animals (1972), exercise is defined as "any physical activity." The purpose of this research is to determine the effect of physical activity on the reproductive system.

The need for exercise to maintain good general health has been described for several animals including rats (Farris, 1954), rabbits (Sawin, 1954), opossums (Farris, 1954), and monkeys (Wagner, 1954), although Pope indicates that it is not necessary in lizards (1954). Dawson states that female cats "do not become sexually receptive when confined to cages," and that males should also be allowed "considerable freedom of movement" (1954).

The budgerigar (Melopsittacus undulatus) was chosen for the experiment since it is a psittacine and closely related to all parrot-like birds. Some parrot-like birds are difficult to breed and observations from budgerigars may be cautiously applied to other psittacines.

The experiment started with fifteen pairs, divided into three groups of five.
pairs each. One female in each group had been placed in a breeding colony once, but it is not known whether she had actually bred. All the remaining birds were virgin stock ranging in age from six to twenty-one months. Pairs were assigned to groups of equal age and relative size; size was determined visually.

The birds were housed by pairs in cages measuring 16" x 13" x 8". They were fed a parakeet seed mixture, supplemented with fresh food and vitamins. A summary of the feeding program is described in table 1. Cuttlebone, grit and water were always available.

Each group was given a different exercise program. The conditioning period lasted twenty-seven days for all groups.

Group I birds were permitted no exercise during the conditioning period but were removed daily from the individual cages and put together in a holding cage (22" x 12" x 15") for two hours as a control for social interaction and handling. One female of this group died during this period, leaving four pairs and a lone male.

Group II birds were also removed to a holding cage, identical to the first, but released into the room after one hour. They were allowed flight and frequently encouraged to fly by walking toward them, causing them to fly to the other end of the room. They were caught again in the dark, and returned to their cages. Although this was not a daily routine (there were days missed) they averaged approximately fifty minutes of freedom per day for a total distance of about 300 feet per bird.

Group III birds were immediately released into the room and allowed freedom for two hours. They were then caught in the dark and returned to their individual cages. Including the days missed, they averaged 100 minutes of freedom per day for a total flight distance of about 585 feet per bird.

Estimates of flight were made by determining the average number of flights across the room per hour and multiplying this by the length of the room and the number of hours (See Appendix A).

After the conditioning period was over, nest boxes were provided for the birds and exercise was discontinued. This minimized disturbing the birds any more than necessary, but caused a problem since many of the birds took a long time to begin nesting.

Data were then collected daily by checking the nest boxes and weighing all young.

RESULTS

The original protocol of the experiment presented several problems. The first was that many of the birds had already lost condition when they finally laid eggs. This could negate the effects of the conditioning. Secondly, many of the pairs simply did not nest. However, there were some differences in the

Appendix A

Calculations of Amount of Exercise

1. Total number of minutes of flight:
 - Group I: 0
 - Group II: 1365
 - Group III: 2725

2. Total number of hours of flight:
 - Group I: 0
 - Group II: 22.75
 - Group III: 45.42

3. Number of flights per hour (average of four one-hour counts):
 - 66.75 flights/hour

4. Length of flights (distance across room):
 - 7.5 m

5. Distance flown per hour (3 x 4)
 - 500.625 m

6. Total distance flown (2 x 5)
 - Group I: 0
 - Group II: 11,389 m/bird
 - Group III: 22,738 m/bird
productivity of the exercised birds compared to the idle birds.

The most significant difference between the exercised and non-exercised groups was the hatching percentage. Although the birds in the group exercised for two hours per day during the conditioning period, they had a lower hatching rate than the one hour group, the exercised groups as a whole had a much higher hatching percentage than the non-exercised group (58.5% as opposed to 42.9%) (figure 1).

Although three week total nest weights (average number of young/nest at 3 weeks x average weight of young at 3 weeks) of the exercised group was lower than the idle group, the total nest weights at one week and at two weeks were slightly higher for the exercised group (figure 2).

Since only seven of the fifteen pairs nested under the conditions described in the procedures, it was decided to see how the birds would fare if allowed liberty in the room. Within thirty-two days of their release, every pair had started to nest and many had started a second clutch. The productivity...
(hatching percentage and total nest weight) was markedly better than either
the non-exercised group or the conditioned and caged group.

With this change in protocol, groups were redefined. Group I is the same as
defined previously in the original procedure; Group II now includes both
Group II and Group III of the original procedure; Group III now includes all
pairs which produced an egg before ten
days after release; Group IV includes all
pairs which produced an egg fourteen
days or more after release.

Group III had a higher hatching per-
centage and total nest weight than either Group I or Group II but a lower
hatching percentage and total nest weight than Group IV. This was true for
the total nest weights at one, two and
three weeks.

Group IV showed the highest pro-
ductivity presumably because they had
a longer period to attain condition than
any of the other groups.

A summary of hatching percentages
and total nest weights is shown in figures 1 and 2.

CONCLUSIONS

Since many factors, such as social
interaction and a "sense of freedom,"
can influence the birds' readiness to
breed, the fact that the birds quickly
went to nest when released cannot be
entirely attributed to exercise.

This experiment indicates some
reproductive parameters are influenced
by physical activity. The total weight of
young produced, as well as the hatching
percentage, are substantially improved
by exercise. This is in agreement with
the reported experiences of many bird
breeders although most agree successful
breeding is possible in even the small
cages such as those used in this
experiment.

In summary, these data indicate
exercise is beneficial, if not necessary,
for breeding budgerigars. This is some-
thing breeders of budgerigars should
consider when trying to improve
hatching or growth.

REFERENCES

Bielfield, Horst. Handbook of Lovebirds. Translated by Christa Ahrens. Neptune City, NJ:

Dawson, Alden B. "The Domestic Cat" in The
Care and Breeding of Laboratory Animals. pp. 202-233. Edited by Edmond J. Farris. New

Farris, Edmond J. "The Opossum" in The Care and Breeding of Laboratory Animals. pp.
256-267. Edited by Edmond J. Farris. New

Keymer, I. F. "The Budgerigar" in The UEAF
Handbook on the Care and Management of
Laboratory Animals. pp. 487-494. Fifth
1976.

National Research Council. Guide for the Care
and Use of Laboratory Animals. National
Research Council. Committee on the Revision
of the Guide for Laboratory Animal Facilities
and Care of the Institute of Laboratory Animal
Resources. 1972.

Pope, Clifford H. "Reptiles" in The Care and
Breeding of Laboratory Animals. pp.
299-330. Edited by Edmond J. Farris. New

Rogers, Cyril. Pet Library’s Parakeet Guide.

Sawin, Paul B. "The Rabbit" in The Care and
Edited by Edmond J. Farris. New York: John
Wiley & Sons. 1954.

Snyder, Robert L. "Behavioral Stress in Captive
Animals" in Research in Zoos and Aquariums:
A Symposium. pp. 41-76. American Associ­
ation of Zoological Parks and Aquariums.
Washington, DC: National Academy of
Sciences. 1975.

Wagner, G. Van. "The Monkey" in The Care and
Breeding of Laboratory Animals. pp. 1-42.
Edited by Edmond J. Farris. New York: John
Wiley & Sons. 1954.

Pure, natural, and cleaned...
finest cuttlebone available.
small 6" - 7" • medium 7" - 10" • jumbo 10" - 13" • mixed sizes

CUTTLEBONE PLUS

5 lbs. at $3.90 per lb. = $19.50
10 lbs. at $3.00 per lb. = $30.00
(all orders prepaid and shipped freight collect)

Dick Schroeder
Cuttlebone Plus • 644 S. Isis Ave., Inglewood, CA 90301

Association of Avian Veterinarians
hosts a
SEMINAR FOR THE PUBLIC
September 30, 1988
7 p.m. to 10 p.m.
at the Adam's Mark Hotel, Houston, Texas
(5 miles west of the Galleria off Westheimer)

Advanced Registration: $25.00
Door Registration: $35.00
Proceeds will go to AAV scholarship fund

SPEAKERS

Pete Cragg, D.V.M. — physical appearance relating to nutrition
Tom Scholz, Animal Port Houston — shipping
Robert J. Berry, zoo curator, retired — avian pediatrics
Walter J. Rosskopf, Jr., D.V.M. — avian disease update

For additional information contact:
Roy Cruszen, D.V.M. — (713) 890-7257
9609 F.M. 1960 West, Houston, TX 77070