Regulatory Assessment of Off-Target Changes and Spurious DNA Insertions in Gene-Edited Organisms for Agri-Food Use

Authors

DOI:

https://doi.org/10.21423/JRS-V09I1LEMA

Keywords:

Gene editing, genome editing, off-target, CRISPR-Cas, biotechnology regulation, new breeding techniques

Abstract

Worldwide, an increasing number of regulatory systems have begun to consider applications for the authorization of activities involving gene-edited organisms for agri-food use. Although a handful of countries have made advances in establishing regulatory criteria and gathering practical experience in this regard, there is still a general need for regulatory cooperation concerning capacity building and development of harmonized criteria. Consequently, many biotechnology regulators need to quickly become more acquainted with the numerous technological possibilities enclosed under the concept of "gene editing", and to incorporate criteria for their regulatory assessment. This article contains a simplified introduction to the state of the art in genome editing, described from a regulatory perspective. In particular, two issues of higher practical importance are covered in detail, namely, off-target effects and unintended DNA insertions. The detailed review of current evidence regarding those issues serves as the basis for proposing concrete regulatory criteria to address them.

doi: 10.21423/jrs-v09i1lema

References

Abudayyeh, O. O., Gootenberg, J. S., Essletzbichler, P., Han, S., Joung, J., Belanto, J. J., Verdine, V., Cox, D. B. T., Kellner, M. J., Regev, A., Lander, E. S., Voytas, D. F., Ying, A. Y., & Zhang, F. (2017). RNA targeting with CRISPR–Cas13. Nature, 550(7675), 280-284. https://www.doi.org/10.1038/nature24049

Andersson, M., Turesson, H., Nicolia, A., Falt, A-S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117-128. https://www.doi.org/10.1007/s00299-016-2062-3

Andersson, M., Turesson, H., Olsson, N., Falt, A-S., Ohlsson, P., Gonzalez, M. N., Samuelsson, M., & Hofvander, P. (2018). Genome editing in potato via CRISPR‐Cas9 ribonucleoprotein delivery. Physiologia Plantarum, 164(4), 378-384. https://www.doi.org/10.1111/ppl.12731

Bae, S., Park, J., & Kim, J-S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10), 1473-1475. https://www.doi.org/10.1093/bioinformatics/btu048

Banakar, R., Eggenberger, A. L., Lee, K., Wright, D. A., Murugan, K., Zarecor, S., Lawrence-Dill, C. J., Sashital, D. G., & Wang, K. (2019). High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Scientific Reports, 9, 1-13. https://www.doi.org/10.1038/s41598-019-55681-y

Bartkowski, B., Theesfeld, I., Pirscher, F., & Timaeus, J. (2018). Snipping around for food: Economic, ethical and policy implications of CRISPR/Cas genome editing. Geoforum, 96, 172-180. https://www.doi.org/10.1016/j.geoforum.2018.07.017

Bodiguel, L., & Cardwell, M. (2010). The Regulation of Genetically Modified Organisms: Comparative Approaches. Oxford University Press. https://www.doi.org/10.1093/acprof:oso/9780199542482.001.0001

Bratovic, M., Fonfara, I., Chylinski, K., Galvez, E. J. C., Sullivan, T. J., Boerno, S., Timmermann, B., Boettcher, M., & Charpentier, E. (2020). Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Nature Chemical Biology, 16, 587-595. https://www.doi.org/10.1038/s41589-020-0490-4

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, B. A., & Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences, 109(43), 17382-17387. https://www.doi.org/10.1073/pnas.1211446109

Carlson, D. F., Lancto, C. A., Zang, B., Kim, E-S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T. S., & Fahrenkrug, S. C. (2016). Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 34(5), 479-481. https://www.doi.org/10.1038/nbt.3560

Carpenter, D., & Ting, M. M. (2005). The political logic of regulatory error. Nature Reviews Drug Discovery, 4(10), 819-823. https://www.doi.org/10.1038/nrd1850

Chen, J. S., Dagdas, Y. S., Kleinstiver, B. P., Welch, M. M., Sousa, A. A., Harrington, L. B., Sternberg, S. H., Joung, J. K., Yildiz, A., & Doudna, J. A. (2017). Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature, 550(7676), 407-410. https://www.doi.org/10.1038/nature24268

Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E. E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N. J., Mathis, L., Voytas, D. F., & Zhang, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 14(1), 169-176. https://www.doi.org/10.1111/pbi.12370

Convention on Biological Diversity. (2020). Text of the Cartagena Protocol on Biosafety. Retrieved from https://bch.cbd.int/protocol/text/

Cradick, T. J., Ambrosini, G., Iseli, C., Bucher, P., & McCaffrey, A. P. (2011). ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics, 12, 152. https://www.doi.org/10.1186/1471-2105-12-152

Craig W., Vanga S. R., & Medaglia, J. C. (2013). Commercialisation of GM Crops: Comparison of Regulatory Frameworks. In P. Christou, R. Savin, B. A. Costa-Pierce, I. Misztal, C. B. A. Whitelaw (Eds.), Sustainable Food Production. Springer. https://www.doi.org/10.1007/978-1-4614-5797-8_837

Cui, Y., Xu, J., Cheng, M., Liao, X., & Peng, S. (2018). Review of CRISPR/Cas9 sgRNA design tools. Interdisciplinary Sciences, Computational Life Sciences, 10(2), 455-465. https://www.doi.org/10.1007/s12539-018-0298-z

Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., Cheng, H., & Yu, D. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology, 217, 90-97. https://www.doi.org/10.1016/j.jbiotec.2015.11.005

Duensing, N., Sprink, T., Parrott, W. A., Fedorova, M., Lema, M. A., Wolt, J. D., & Bartsch, D. (2018). Novel features and considerations for ERA and regulation of crops produced by genome editing. Frontiers in Bioengineering and Biotechnology, 6, 79. https://www.doi.org/10.3389/fbioe.2018.00079

EFSA Panel on Genetically Modified Organisms. (2012). Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site‐Directed Nucleases with similar function. EFSA Journal, 10(10), 2943. https://www.doi.org/10.2903/j.efsa.2012.2943

Eriksson, S., Jonas, E., Rydhmer, L., & Rocklinsberg, H. (2018). Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. Journal of Dairy Science, 101(1), 1-17. https://www.doi.org/10.3168/jds.2017-12962

Eriksson, D., Kershen, D., Nepomuceno, A., Pogson, B. J., Prieto, H., Purnhagen, K., Smyth, S., Wesseler, J., & Whelan, A. (2019). A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytologist, 222(4), 1673-1684. https://www.doi.org/10.1111/nph.15627

Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J., & Church, G. M. (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods, 10(11), 1116-1121. https://www.doi.org/10.1038/nmeth.2681

Exec. Order No. 13874, 84 Fed. Reg. 112 (June 11, 2019).

Farasat, I., & Salis, H. M. (2016). A biophysical model of CRISPR/Cas9 activity for rational design of genome editing and gene regulation. PLoS Computational Biology, 12(1), e1004724. https://www.doi.org/10.1371/journal.pcbi.1004724

Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229-1232. https://www.doi.org/10.1038/cr.2013.114

Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D-L., Whang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., & Zhu, J-K. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences, 111(12), 4632-4637. https://www.doi.org/10.1073/pnas.1400822111

Feng, C., Su, H., Bai, H., Wang, R., Liu, Y., Guo, X., Liu, C., Zhang, J., Yuan, J., Birchler, J. A., & Han, F. (2018). High‐efficiency genome editing using a dmc1 promoter‐controlled CRISPR/Cas9 system in maize. Plant Biotechnology Journal, 16(11), 1848-1857. https://www.doi.org/10.1111/pbi.12920

Friedrichs, S., Takasu, Y., Kearns, P., Dagallier, B., Oshima, R., Schofield, J., & Moreddu, C. (2019). Meeting report of the OECD conference on "Genome Editing: Applications in Agriculture - Implications for Health, Environment and Regulation". Transgenic Research, 28(3-4), 419. https://www.doi.org/10.1007/s11248-019-00154-1

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822-826. https://www.doi.org/10.1038/nbt.2623

Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., & Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32, 279-284. https://www.doi.org/10.1038/nbt.2808

Gao, W., Xu, W-T., Huang, K-L., Guo, M-Z., & Luo, Y. B. (2018). Risk analysis for genome editing-derived food safety in China. Food Control, 84, 128-137. https://www.doi.org/10.1016/J.FOODCONT.2017.07.032

Gatica-Arias, A. (2020). The regulatory current status of plant breeding technologies in some Latin American and the Caribbean countries. Plant Cell, Tissue and Organ Culture (PCTOC), 141, 229-242. https://www.doi.org/10.1007/s11240-020-01799-1

Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471. https://www.doi.org/10.1038/nature24644

Grau, J., Boch, J., & Posch, S. (2013). TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics, 29(22), 2931-2932. https://www.doi.org/10.1093/bioinformatics/btt501

Guilinger, J. P., Thompson, D. B., & Liu, D. R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 32(6), 577-582. https://www.doi.org/10.1038/nbt.2909

Gutierrez-Triana, J. A., Tavhelidse, T., Thumberger, T., Thomas, I., Wittbrodt, B., Kellner, T., Anlas, K., Tsingos, E., & Wittbrodt, J. (2018). Efficient single-copy HDR by 5' modified long dsDNA donors. eLife, 7, e39468. https://www.doi.org/10.7554/eLife.39468

Hahn, F., & Nekrasov, V. (2019). CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Reports, 38(4), 437-441. https://www.doi.org/10.1007/s00299-018-2355-9

Hanna, R. E., & Doench, J. G. (2020). Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 38(7), 813-823. https://www.doi.org/10.1038/s41587-020-0490-7

He, Z., Proudfoot, C., Whitelaw, C. B. A., & Lillico, S. G. (2016). Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells. SpringerPlus, 5, 814. https://www.doi.org/10.1186/s40064-016-2536-3

Hilton, I. B., D'Ippolito, A. M., Vockley, C. M., Thakore, P. I., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 33(5), 510-517. https://www.doi.org/10.1038/nbt.3199

Hoffmann, M. D., Aschenbrenner, S., Grosse, S., Rapti, K., Domenger, C., Fakhiri, J., Mastel, M., Borner, K., Eils, R., Grimm, D., & Niopek, D. (2019). Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Research, 47(13), e75. https://www.doi.org/10.1093/nar/gkz271

Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., & Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827-832. https://www.doi.org/10.1038/nbt.2647

Ishii, T., & Araki, M. (2016). Consumer acceptance of food crops developed by genome editing. Plant Cell Reports, 35(7), 1507-1518. https://www.doi.org/10.1007/s00299-016-1974-2

Ishii, T., & Araki, M. (2017). A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops & Food, 8(1), 44-56. https://www.doi.org/10.1080/21645698.2016.1261787

Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 16. https://www.doi.org/10.1186/s12896-015-0131-2

Jao, L-E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences, 110(34), 13904-13909. https://www.doi.org/10.1073/pnas.1308335110

Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics, 46, 505-529. https://www.doi.org/10.1146/annurev-biophys-062215-010822

Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J-L., Zhang, F., & Gao, C. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 364(6437), 292-295. https://www.doi.org/10.1126/science.aaw7166

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. https://www.doi.org/10.1126/science.1225829

Jones, H. D. (2015). Future of breeding by genome editing is in the hands of regulators. GM Crops & Food, 6(4), 223-232. https://www.doi.org/10.1080/21645698.2015.1134405

Josephs, E. A., Kocak, D. D., Fitzgibbon, C. J., McMenemy, J., Gersbach, C. A., & Marszalek, P. E. (2015). Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Research, 43(18), 8924-8941. https://www.doi.org/10.1093/nar/gkv892

Jouanin, A., Boyd, L., Visser, R. G. F., & Smulders, M. J. M. (2018). Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in Europe. Frontiers in Plant Science, 9, 1523. https://www.doi.org/10.3389/fpls.2018.01523

Kaya, H., Mikami, M., Endo A., & Toki, S. (2016). Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Scientific Reports, 6, 26871. https://www.doi.org/10.1038/srep2 6871

Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J-S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012-1019. https://www.doi.org/10.1101/gr.171322.113

Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S-H., & Kim, J-S. (2016). Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 34(8), 863-868. https://www.doi.org/10.1038/nbt.3609

Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., Gonzales, A. P. W., Li, Z., Peterson, R. T., Joanna Yeh, J-R., & Aryee, M. J. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561), 481-485. https://www.doi.org/10.1038/nature14592

Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529, 490-495. 10.1038/nature16526

Kleter, G. A., Kuiper, H. A., & Kok, E. J. (2019). Gene-edited crops: towards a harmonized safety assessment. Trends in Biotechnology, 37(5), 443-447. https://www.doi.org/10.1016/j.tibtech.2018.11.014

Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H., Nureki, O., & Zhang, F. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), 583-588. doi: 10.1038/nature14136

Kosicki, M., Tomberg, K., & Bradley, A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 36(8), 765-771. https://www.doi.org/10.1038/nbt.4192

Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Ostergaard, L., Patron, N., Uauy, C., & Harwood, W. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology, 16(1), 258. https://www.doi.org/10.1186/s1305 9-015-0826-7

Le Page, M. (2020). A French food fight. New Scientist 245(3274), 20-21. https://www.doi.org/10.1016/S0262-4079(20)30589-3

Lee, K., Zhang, Y., Kleinstiver, B. P., Guo, J. A., Aryee, M. J., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C. J., Joung, J. K., Qi, Y., & Wang, K. (2018). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 17(2), 362–372. https://www.doi.org/10.1111/pbi.12982

Lee, J. H., Mazarei, M., Pfotenhauer, A. C., Dorrough, A. B., Poindexter, M. R., Hewezi, T., Lenaghan, S. C., Graham, D. E., & Stewart, C. N., Jr. (2020). Epigenetic footprints of CRISPR/Cas9-mediated genome editing in plants. Frontiers in Plant Science, 10, 1720. https://www.doi.org/10.3389/fpls.2019.01720

Lema, M. A. (2019). Regulatory aspects of gene editing in Argentina. Transgenic Research, 28, 147-150. https://www.doi.org/10.1007/s11248-019-00145-2

Li, Z., Liu, Z-B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L. Ward, R. T., Clifton, E., Falco, S. C., & Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 169(2), 960-970. https://www.doi.org/10.1104/pp.15.00783

Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41(2), 63-68. https://www.doi.org/10.1016/j.jgg.2013.12.001

Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., Doman, J. L., Liu, D. R., & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38, 582-585. https://www.doi.org/10.1038/s41587-020-0455-x

Lusser, M., Parisi, C., Plan, D., & Rodriguez-Cerezo, E. (2011). New plant breeding techniques. State-of-the-art and prospects for commercial development. European Union. https://www.doi.org/10.2791/54761

Ma, X., Zhu, Q., Chen, Y., & Liu, Y-G. (2016). CRISPR/Cas9 platforms for genome editing in plants: Developments and applications. Molecular Plant, 9(7), 961-974. https://www.doi.org/10.1016/j.molp.2016.04.009

Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA–guided activation of endogenous human genes. Nature Methods, 10(10), 977-979. https://www.doi.org/10.1038/nmeth.2598

Mahfouz, M. M., Piatek, A., & Stewart, C. N., Jr. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal, 12(8), 1006-1014. https://www.doi.org/10.1111/pbi.12256

Merling, R. K., Kuhns, D. B., Sweeney, C. L., Wu, X., Burkett, S., Chu, J., Lee, J., Koontz, S., Di Pasquale, G., Afione, S. A., Chiorini, J. A. ,Kang, E. M., Choi, U., De Ravin, S. S., & Malech, H. L. (2017). Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease. Blood Advances, 1(4), 270-278. https://www.doi.org/10.1182/bloodadvances.2016001214

Ming, M., Ren, Q., Pan, C., He, Y., Zhang, Y., Liu, S., Zhong, Z., Wang, J., Malzahn, A. A., Wu, J., Zheng, X., Zhang, Y., & Qi, Y. (2020). CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 6(3), 202-208. https://www.doi.org/10.1038/s41477-020-0614-6

Modrzejewski, D., Hartung, F., Sprink, T., Krause, D., Kohl, C., Schiemann, J., & Wilhelm, R. (2018). What is the available evidence for the application of genome editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map protocol. Environmental Evidence, 7, 18. https://www.doi.org/10.1186/s13750-018-0130-6

Morbitzer, R., Romer, P., Boch, J., & Lahaye, T. (2010). Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proceedings of the National Academy of Sciences, 107(50), 21617-21622. https://www.doi.org/10.1073/pnas.1013133107

Mussolino, C., & Cathomen, T. (2012). TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 23(5), 644-650. https://www.doi.org/10.1016/j.copbio.2012.01.013

National Academies of Sciences, Engineering, and Medicine. (2016). Regulation of Current and Future Genetically Engineered Crops. In Genetically Engineered Crops: Experiences and Prospects. The National Academies Press.

Nekrasov, V., Wang, C., Win, J. Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 7, 482. https://www.doi.org/10.1038/s41598-017-00578-x

Nihongaki, Y., Kawano, F., Nakajima, T., & Sato, M. (2015). Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 33(7), 755-760. https://www.doi.org/10.1038/nbt.3245

Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T., & Osakabe, Y. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6, 31481. https://www.doi.org/10.1038/srep31481

Norris, A. L., Lee, S. S., Greenlees, K. J., Tadesse, D. A., Miller, M. F., & Lombardi, H. A. (2020). Template plasmid integration in germline genome-edited cattle. Nature Biotechnology, 38(2), 163-164. https://www.doi.org/10.1038/s41587-019-0394-6

Organisation for Economic Co-operation and Development. (2020). Documents on Harmonisation of Regulatory Oversight in Biotechnology and the Safety of Novel Foods and Feeds. Retrieved from https://www.oecd.org/chemicalsafety/biotrack/documentsonharmonisationofregulatoryoversightinbiotechnologyandthesafetyofnovelfoodsandfeeds.htm

Ono, R., Yasuhiko, Y., Aisaki, K-I., Kitajima, S., Kanno, J., & Hirabayashi, Y. (2019). Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Communications Biology, 2, 1-8. https://www.doi.org/10.1038/s42003-019-0300-2

Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA programmed Cas9 nuclease specificity. Nature Biotechnology, 31, 839-843. https://www.doi.org/10.1038/nbt.2673

Pattanayak, V., Ramirez, C. L., Joung, J. K., & Liu, D. R. (2011). Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature Methods, 8(9), 765-770. https://www.doi.org/10.1038/nmeth.1670

Pauwels, K., Podevin, N., Breyer, D., Carroll, D., & Herman, P. (2014). Engineering nucleases for gene targeting: safety and regulatory considerations. New Biotechnology, 31(1), 18-27. https://www.doi.org/10.1016/j.nbt.2013.07.001

Peterson, B. A., Haak, D. C., Nishimura, M. T., Teixeira, P. J. P. L., James, S. R., Dangl, J. L., & Nimchuk, Z. L. (2016). Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PloS one, 11(9), e0162169. https://www.doi.org/10.1371/journal.pone.0162169

Podevin, N., Davies, H. V., Hartung, F., Nogue, F., & Casacuberta, J. M. (2013). Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends in Biotechnology, 31(6), 375-383. https://www.doi.org/10.1016/j.tibtech.2013.03.004

Ran, F. A., Hsu, P. D., Lin, C-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., & Zhang, F. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6), 1380-1389. https://www.doi.org/10.1016/j.cell.2013.08.021

Riveros-Maidana, R., Mendez-Ferreira, A., Benitez-Candia, N., Nara-Pereira, E., & Fernandez-Rios, D. (2020). CRISPR/Cas system: precision genome editing. Memorias del Instituto de Investigaciones en Ciencias de la Salud, 18(1), 97-107. https://www.doi.org/10.18004/mem.iics/1812-9528/2020.018.01.97-107

Rowland, G. G. (2009). The Effect of Plants with Novel Traits (PNT) Regulation on Mutation Breeding in Canada. In Q. Y. Shu (Ed.), Induced Plant Mutations in the Genomics Era, Food and Agriculture Organization of the United Nations (pp. 423-424). Food and Agriculture Organization of the United Nations, Rome.

Sander, J. D., Ramirez, C. L., Linder, S. J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J. A., Reyon, D., Bernstein, B. E., Liu, D. R., & Joung, J. K. (2013). In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Research, 41(19), e181. https://www.doi.org/10.1093/nar/gkt716

Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347-355. https://www.doi.org/10.1038/nbt.2842

Sansbury, B. M., Hewes, A. M., & Kmiec, E. B. (2019). Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Communications Biology, 2, 1-10. https://www.doi.org/10.1038/s42003-019-0705-y

Sauer, N. J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Walker, K. A., Beetham, P. R., Schopke, C. R., & Gocal, G. F. W. (2016). Oligonucleotide‐directed mutagenesis for precision gene editing. Plant Biotechnology Journal, 14(2), 496-502. https://www.doi.org/10.1111/pbi.12496

Schiemann, J., Dietz-Pfeilstetter, A., Hartung, F., Kohl, C., Romeis, J., & Sprink, T. (2019). Risk assessment and regulation of plants modified by modern biotechniques: current status and future challenges. Annual Review of Plant Biology, 70, 699-726. https://www.doi.org/10.1146/annurev-arplant-050718-100025

Schiemann, J., Robienski, J., Schleissing, S., Spok, A., Sprink, T., & Wilhelm, R. A. (2020). Plant Genome Editing–Policies and Governance. Frontiers in Plant Science, 11:284. https://www.doi.org/10.3389/fpls.2020.00284

Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P., & Pruett-Miller, S. M. (2018). A survey of validation strategies for CRISPR-Cas9 editing. Scientific Reports, 8(1), 1-8. https://www.doi.org/10.1038/s41598-018-19441-8

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J-L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686-688. https://www.doi.org/10.1038/nbt.2650

Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9(10), 2395-2410. https://www.doi.org/10.1038/nprot.2014.157

Shearer, H. (2014). Regulation of plants with novel traits: Canadian perspectives on the "novelty" trigger. In A. Eaglesham, & R. W. F. Hardy (Eds), New DNA-Editing Approaches: Methods, Applications and Policy for Agriculture (pp. 193-200). North American Agricultural Biotechnology Council, Ithaca, NY.

Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P., & Paques, F. (2011). Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 11(1), 11-27. https://www.doi.org/10.2174/156652311794520111

Skryabin, B. V., Kummerfeld, D-M., Gubar, L., Seeger, B., Kaiser, H., Stegemann, A., Roth, J., Meuth, S. G., Pavenstadt, H., Sherwood, J., Pap, T., Wedlich-Soldner, R., Sunderkotter, C., Schwartz, Y. B., Brosius, J., & Rozhdestvensky, T. S. (2020). Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9–mediated genome editing events. Science Advances, 6(7), eaax2941. https://www.doi.org/10.1126/sciadv.aax2941

Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268), 84-88. https://www.doi.org/10.1126/science.aad5227

Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brodsky, R. A., Zhang, K., Cheng, L., & Ye, Z. (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15(1), 12-13. https://www.doi.org/10.1016/j.stem.2014.06.011

Sprink, T., Metje, J., & Hartung, F. (2015). Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Current Opinion in Biotechnology, 32, 47-53. https://www.doi.org/10.1016/j.copbio.2014.11.010

Sprink, T., Eriksson, D., Schiemann, J., & Hartung, F. (2016a). Regulatory hurdles for genome editing: process-vs. product-based approaches in different regulatory contexts. Plant Cell Reports, 35(7), 1493-1506. https://www.doi.org/10.1007/s00299-016-1990-2

Sprink, T., Metje, J., Schiemann, J., & Hartung, F. (2016b). Plant genome editing in the European Union - to be or not to be - a GMO. Plant Biotechnology Reports, 10(6), 345-351. https://www.doi.org/10.1007/s11816-016-0418-3

Srinivas, K. R. (2018). Regulating Genome Edited Crops and European Court of Justice Ruling. Asian Biotechnology & Development Review, 20(1&2), 89-87.

Steinert, J., Schiml, S., Fauser, F., & Puchta, H. (2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant Journal, 84, 1295-1305. https://www.doi.org/10.1111/tpj.13078

Stepper, P., Kungulovski, G., Jurkowska, R. Z., Chandra, T., Krueger, F., Reinhardt, R., Reik, W., & Jurkowski, T. P. (2017). Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Research, 45(4), 1703-1713. https://www.doi.org/10.1093/nar/gkw1112

Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J., & Russell, R. (2018). Kinetic basis for DNA target specificity of CRISPR-Cas12a. Molecular Cell, 71(5), 816-824. https://www.doi.org/10.1016/j.molcel.2018.06.043

Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169(2), 931-945. https://www.doi.org/10.1104/pp.15.00793

Swarts, D. C., van der Oost, J., & Jinek, M. (2017). Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Molecular Cell, 66(2), 221-233. https://www.doi.org/10.1016/j.molcel.2017.03.016

Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T., & Zhang, Y. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 19(1), 84. https://www.doi.org/10.1186/s13059-018-1458-5

Thygesen, P. (2019). Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Research, 28}(2), 151-159. https://www.doi.org/10.1007/s11248-019-00151-4

Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J., & Joung, J. K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 32(6), 569-576. https://www.doi.org/10.1038/nbt.2908

Tsuda, M., Watanabe, K. N., & Ohsawa, R. (2019). Regulatory Status of Genome-Edited Organisms Under the Japanese Cartagena Act. Frontiers in Bioengineering and Biotechnology, 7, 387. https://www.doi.org/10.3389/fbioe.2019.00387

Tycko, J., Myer, V. E., & Hsu, P. D. (2016). Methods for optimizing CRISPR-Cas9 genome editing specificity. Molecular Cell, 63(3), 355-370. https://www.doi.org/10.1016/j.molcel.2016.07.004

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636-646. https://www.doi.org/10.1038/nrg2842

Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., Klasic, M., & Zoldos, V. (2016). Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Research, 44(12), 5615-5628. https://www.doi.org/10.1093/nar/gkw159

Whelan, A. I., & Lema, M. A. (2015). Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops & Food, 6(4), 253-265. https://www.doi.org/10.1080/21645698.2015.1114698

Whelan, A. I., & Lema, M. A. (2017). A research program for the socioeconomic impacts of gene editing regulation. GM Crops & Food, 8(1), 74-83. https://www.doi.org/10.1080/21645698.2016.1271856

Whelan, A. I., & Lema, M. A. (2019). Regulation of Genome Editing in Plant Biotechnology: Argentina. In H-G. Dederer, & D. Hamburger (Eds.), Regulation of Genome Editing in Plant Biotechnology: A Comparative Analysis of Regulatory Frameworks of Selected Countries and the EU (pp. 19-62). Springer.

Whelan, A. I., Gutti, P., & Lema, M. A. (2020). Gene editing regulation and innovation economics. Frontiers in Bioengineering and Biotechnology, 8, 303. https://www.doi.org/10.3389/fbioe.2020.00303

Wolter, F., Klemm, J., & Puchta, H. (2018). Efficient in planta gene targeting in Arabidopsis using egg cell‐specific expression of the Cas9 nuclease of Staphylococcus aureus. The Plant Journal, 94(4), 735-746. https://www.doi.org/10.1111/tpj.13893

Wong, N., Liu, W., & Wang, X. (2015). WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology, 16(1), 218. https://www.doi.org/10.1186/s13059-015-0784-0

Woo, J. W., Kim, J., Kwon, S. I., Corvalan, C., Choo, S. W., Kim, H., Kim, S-G., Kim, S-T., Choe, S., & Kim, J-S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 33(11), 1162-1164. https://www.doi.org/10.1038/nbt.3389

Woodgate, J., Palfrey, D., Nagel, D. A., Hine, A. V., & Slater, N. K. H. (2002). Protein‐mediated isolation of plasmid DNA by a zinc finger‐glutathione S‐transferase affinity linker. Biotechnology and Bioengineering, 79(4), 450-456. https://www.doi.org/10.1002/bit.10296

World Health Organization, & Food and Agriculture Organization of the United Nations. (n.d.). The role of Codex in Biotechnology. Retrieved from http://www.fao.org/fao-who-codexalimentarius/thematic-areas/biotechnology/en/

Wright, D. A., Li, T., Yang, B., & Spalding, M. H. (2014). TALEN-mediated genome editing: prospects and perspectives. Biochemical Journal, 462(1), 15-24. https://www.doi.org/10.1042/BJ20140295

Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR–Cas system. Molecular Plant, 6(6), 1975-1983. https://www.doi.org/10.1093/mp/sst119

Xu, X., Duan, D., & Chen, S-J. (2017). CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Scientific Reports, 7(1), 143. https://www.doi.org/10.1038/s41598-017-00180-1

Yee, J. K. (2016). Off‐target effects of engineered nucleases. The FEBS journal, 283(17), 3239-3248. https://www.doi.org/10.1111/febs.13760

Young, A. E., Mansour, T. A., McNabb, B. R., Owen, J. R., Trott, J. F., Brown, C. T., & Van Eenennaam, A. L. (2020). Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 38(2), 225-232. https://www.doi.org/10.1038/s41587-019-0266-0

Zhang, F., Maeder, M. L., Unger-Wallace, E., Hoshaw, J. P., Reyon, D., Christian, M., Li, X., Pierick, C. J., Dobbs, D., Peterson, T., Joung, J. K., & Voytas, D. F. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 12028-12033. https://www.doi.org/10.1073/pnas.0914991107

Zhang, X-H., Tee, L. Y., Wang, X-G., Huang, Q-S., & Yang, S-H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy - Nucleic Acids, 4, e264. https://www.doi.org/10.1038/mtna.2015.37

Zhang, Q., Xing, H-L., Wang, Z-P., Zhang, H-Y., Yang, F., Wang, X-C., & Chen, Q-J. (2018). Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology, 96(4-5), 445-456. https://www.doi.org/10.1007/s11103-018-0709-x

Zhang, Y., Pribil, M., Palmgren, M., & Gao, C. (2020). A CRISPR way for accelerating improvement of food crops. Nature Food, 1, 200-205. https://www.doi.org/10.1038/s43016-020-0051-8

Zhou, H., Liu, B., Weeks, D. P., Spalding, M. H., & Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 42(17), 10903-10914. https://www.doi.org/10.1093/nar/gku806

Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L. M., Li, Y., & Yang, H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 364(6437), 289-292. https://www.doi.org/10.1126/science.aav9973

Downloads

Published

2021-01-05