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ABSTRACT 
 

The feasibility of Raman spectroscopy for qualitative and quantitative assessment of 
fumonisins in ground maize was investigated using the samples with a concentration 
ranging from 2 to 99 mg/kg.  Major Raman bands relevant to an increased level of 
fumonisins and fumonisin effects on starch molecules were observed in several Raman 
shift regions.  The k-nearest neighbor (KNN) models achieved highest classification 
accuracies for both training (100%) and independent validation (96−100%) data.  Three 
classification models (k-nearest neighbor, linear discriminant analysis, and partial least 
squares discriminant analysis) correctly classified fumonisin contaminated samples of 
>5 mg/kg.  All chemometrics models for quantitative determination of fumonisins could 
explain high levels of variation in spectra data.  Multiple linear regression (MLR) and 
partial least square regression (PLSR) models showed high predictive accuracies and 
moderate error rates.  The statistical results showed no significant difference between 
LC-MS/MS (liquid chromatography-tandem mass spectrometry) reference and Raman 
predicted values, implying some models developed have the ability to accurately 
predict fumonisin levels in ground maize samples for rapid screening and identification 
of contaminated samples.  Thus, the results suggest Raman spectroscopy as a possible 
fast screening tool for high-throughput analysis of fumonisin contaminated samples to 
improve food and feed safety. 

 

1. Introduction 
 
  Mycotoxin contamination of maize  
(Zea mays L.) kernels caused by Fusarium spp is 
common in most maize production regions of the 

world and includes fumonisins, deoxynivalinol 
and zearalenone (Gelderblom et al, 1988).  
Fusarium ear rots may lead to fumonisin 
contamination produced by F. moniliforme and F. 
proliferatum (Miller, 2008). Fumonisin toxicity 
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may lead to brain liquefaction in equids, 
pulmonary edema in swine and is suspected to 
cause esophageal cancer in humans and neural 
tube defects in unborn children during pregnancy 
(Munkvold and Desjardins, 1997). The United 
States Food and Drug Administration (FDA) and 
European Commission (EC Commission 
Regulation 165/2010) released fumonisin advisory 
levels and maximum tolerance levels, respectively 
for maize and different maize products. Best 
practices for preventing infection of maize by 
Fusarium and entry of fumonisin contaminated 
maize into the food chain are the subject of Codex 
Alimentarius standards, research, and educational 
outreach activities (Codex Alimentarius 
Commission, 2012).  

The post-harvest management of maize 
includes cleaning, milling, and thermal processing 
and may alleviate fumonisins concentrations in 
finished products (Bullerman and Bianchini, 
2007; Katta et al, 1997; Sydenham et al, 1994). 
The development of rapid and reliable analytical 
methods will improve management of fumonisin 
risk to animal and human health. Fumonisins can 
be found in visually sound maize kernels, and 
fungal mass is not always associated with actual 
fumonisin concentrations. Existing methods 
widely used for fumonisin analysis include high 
performance liquid chromatography (HPLC), thin-
layer chromatography, gas chromatograph-mass 
spectrometry (GC-MS), and enzyme-linked 
immunosorbent assay (ELISA) (Turner et al, 
2009). These methods provide accurate and 
reproducible quantification of fumonisins, but 
involve complex and time-consuming steps for 
sample extraction and preparation. These 
analytical methods are not suitable for a real-time 
monitoring and a high-throughput screening of a 
large number of maize samples. 

Spectroscopies, such as near-infrared (NIR) 
and mid-infrared spectroscopy, have been 
investigated for detection of fumonisins (Dowell 
et al, 2002; Fernández-Ibañez et al, 2009; Kos et 
al, 2007; Liu et al, 2009; Pearson et al, 2001; 
Petterson and Åberg, 2003). The advent of 
modern inter-ferometric and Fourier transform 
techniques further improved the spectral accuracy 

and reproducibility, providing faster and higher 
resolution of spectrum for characterization of 
mycotoxins in grains and oilseeds (Fernández-
Ibañez et al, 2009; Kos et al, 2002; Peiris et al, 
2009; Tripathi and Mishra, 2009). However, 
spectral interpretation of samples with low 
mycotoxin concentrations might not be easy 
because spectrum overlapping and interference 
from other functional chemical groups generally 
observed in infrared absorption bands may greatly 
influence some important bands associated with 
mycotoxin molecules. In addition, a strong 
influence by HOH bending absorption of water 
molecules over the range of infrared wavelengths 
is likely to distort bands of interest associated with 
mycotoxin molecules due to residual features of 
water bands even after subtraction or 
differentiation (Byler and Susi, 1988). 

Raman spectroscopy may overcome some of 
these constraints that limit the application of 
spectral-based detection of fumonisin. The 
principle behind Raman spectroscopy involves 
irradiation of a substance with a monochromatic 
light and detection of the scattered light with 
different frequencies corresponding to the 
vibrational motions of the molecule (Smith and 
Dent, 2005). Similar to the infrared spectrum, 
Raman spectrum provide information about the 
vibrational transition energy of the molecules.  
Raman spectroscopy is more sensitive to the 
symmetrical vibrations of the covalent bonds in 
nonpolar groups (e.g., C=C and S-S) while 
infrared spectroscopy better corresponds to 
asymmetrical vibrations in polar functional groups 
(e.g., N-H, C=O and O-H) (Skoog et al, 1998).  
Contrary to infrared spectroscopic techniques, 
Raman spectroscopy is useful for sample analysis 
in aqueous conditions due to its insensitivity to 
water (Colthup et al, 1990). Comparative studies 
on grain quality classification also showed Raman 
spectroscopy produces higher spectral resolution 
and more distinct features than infrared 
spectroscopic methods (Ma and Phillips, 2002; 
Sohn et al, 2004). 

Raman spectroscopy application in the field of 
cereal science has been limited, particularly 
involving the detection of mycotoxins in grains. 
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Liu et al (2009) use Raman spectroscopy 
combined with chemometrics to classify low and 
high level DON-contaminated wheat and barley.  
Golightly et al (2009) applied surface enhanced 
Raman spectroscopy (SERS) magnetic bead-based 
assay to detect aflatoxin B1 in peanut butter. 
However, a paucity of information exists 
involving the application of Raman spectroscopic 
for the classification and quantification of 
fumonisin contamination in maize. The objective 
of this study was to assess the feasibility of Raman 
spectroscopy combined with chemometrics to 
develop classification and quantification calibration 
models for detecting fumonisins in naturally 
contaminated maize samples.  

 

2. Materials and methods 

2.1. Sample preparation 

Fumonisin standards (FB1, FB2, and FB3) 
were obtained from Romer® Labs, Inc.-Biopure 
(Tullin, Austria).  Water and methanol were LC-
MS grade, purchased from VWR International, 
LLC (Bridgeport, NJ).  Formic acid was of HPLC 
grade from Fisher Scientific International, Inc. 
(Pittsburgh, PA).  

Maize samples were obtained from 
experimental field studies conducted at the Texas 
A&M AgriLife Research and Extension Center in 
Lubbock, Texas and from the Office of the Texas 
State Chemist (OTSC) regulatory samples 
collected in conformance with the state’s plan of 
work. A total of 100 samples with fumonisin 
concentrations between 2.0 and 99.0 mg/kg were 
selected for biochemical and Raman spectral 
analyses from each of collected sample sets. The 
selected samples were ground in Retsch® Ultra 
Centrifugal Mill ZM 200 (Retsch®, Haan, 
Germany) to pass through a 0.075 mm diameter 
screen and stored in a polyethylene bottle at 4 °C 
prior to analysis and between sample measurements. 
The moisture content of all samples was kept 
below about 15% to prevent fungal growth in 
samples. The samples were equilibrated for at 
least 1 h at room temperature before use. 

2.2. Raman spectroscopy   

Approximately 5 g of the sample was directly 
analyzed by Raman spectroscopy 
(RamanStation™ 400F, Perkin-Elmer®, 
Beaconsfield, Buckingham-shire, U.K.). All 
samples were analyzed in quadruplicate. The 
Raman system was equipped with a near-infrared 
laser at excitation wavelength of 785 nm and a 
256 x 1024 pixel CCD detector. The laser power 
of 50 mW was used to focus to a 5-mm x 5-mm 
spot on the sample with exposure times of 2 sec 
and 5 scans. Spectra data acquisition and analysis 
were performed using the Spectrum (v. 6.3) 
software interfaced with the spectroscopy in the 
Raman shift ranges of 200 to 3500 cm-1 at the 
spectral resolution of 4 cm-1. The spectra from 
different spots on the sample were co-added to 
produce a single spectra data. The sample plate 
was set on an x, y, z-motorized sample holder to 
automatically align samples and obtain the 
optimal spectrum. 

 
2.3. Liquid chromatography tandem mass 
spectrometry (LC-MS/MS) analysis of fumonisins 

 
Fumonisin contaminated samples were 

analyzed to determine fumonisin B1 (FB1), 
fumonisin B2 (FB2), fumonisin B3 (FB3) with 
LC-MS/MS as described in Li et al (2010). Briefly, 
50 g of ground maize samples was extracted with 100 
mL of methanol/water (70:30, v/v) by shaking for 15 
min at 200 rpm. A filtered 25 mL extract was 
centrifuged at 3000 rpm for 5 min. After 
centrifugation, the samples with high fumonisin 
concentrations were additionally diluted with 50% 
methanol in water. One mL of supernatant aliquot 
was then spiked with 40 µL of [U-  𝐶3413 ]FB1 
solution (250 ng/mL-1) and filtered through a 
PVDF 0.2 µm syringe filter prior to LC-MS/MS 
analysis. 

The LC-MS/MS system consisted of a 
Waters® Acquity UPLC coupled to a Quattro 
Premier XE system equipped with an electrospray 
interface (ESI) (Waters®, Milford, MA). 
Chromatographic separation was achieved using a 
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Waters® Acquity UPLC BEH C18 column 
(2.1x50 mm, 1.7 um particle size) operated at 50 °C. 
The mobile phases consisting of A (water with 0.1% 
formic acid) and B (methanol with 0.1% formic 
acid) were used at a flow rate of 0.3 mL/min.  The 
gradient conditions were as follows: at 0 min, 
50% A : 50% B; at 2.5 min 10% A : 90% B; at 2.6 
min 0% A : 100% B; at 3.6 min 50% A: 50% B; at 
5.0 min (end), 50% A: 50% B. The mass 
spectrometer was operated in the positive 
electrospray ionization (ESI) mode at a cone 
voltage of 50 V, a source temperature of 140°C, a 
desolvation temperature of 400°C, and a 
desolvation gas (nitrogen) flow of 600 L/h. High-
purity argon was used as collision gas for multiple 
reaction monitoring (MRM) at a pressure of 4.7 x 
10-3 mbar.  For the detection of FB1, the precursor 
ion was m/z 722 and the product ions were 
selected at m/z 352.4 and 334.4.  For FB2 and 
FB3, the precursor ion was m/z 706 and product 
ions m/z 318.4 and 336.4. Other parameters of 
MRM and detailed analytical conditions were 
described previously (Li et al, 2010). 

 
2.4. Spectral data preprocessing   

 
  After background correction by subtracting the 
Raman scattering noise through the computational 
process embedded in the Spectrum (v.6.3) 
software, the spectral data were baseline-corrected 
and normalized to reduce the systematic variation 
and the matrix effects. The normalized spectra 
curve was pretreated by a Savitizky-Golay method 
with smoothing points of 9 to calculate the first 
and second derivatives of the spectra. The 
deconvolution process (Byler and Susi, 1988) for 
the normalized spectra was also carried out to 
increase the vertical resolution of unresolved 
bands. 

 
2.5. Development and validation of fumonisin 
classification models 

 
The preprocessed spectra data were converted 

to ASCII format for being utilized by statistical 
software (SAS® v 9.2, Cary, NC) to perform 

principal component analysis (PCA) and cluster 
analysis (CA) (Lee et al, 2005). The chemometric 
models using k-nearest neighbor (KNN), linear 
discriminant analysis (LDA), principal component 
discriminant analysis (PCDA), and partial least 
squares discriminant analysis (PLSDA) algorithms 
were developed for classification of non-
contaminated and contaminated maize samples 
using 5 mg/kg fumonisin concentration as 
threshold. Accordingly, the total number of 100 
fumonisin samples was partitioned into 4 different 
subsets including Group 1 (< 5 mg/kg, considered 
as fumonisin negative), Group 2 (5−25 mg/kg), 
Group 3 (25−50 mg/kg), and Group 4 (> 50 
mg/kg). Each subset was randomly divided into 
training (75%) and validation (25%) data set for 
model development and testing, respectively. The 
models’ performance and accuracy were 
compared and the best classification model 
identified based on a correct classification rate and 
a false negative error. The more detailed 
procedures for chemometric algorithms applied 
for this study were described in previous studies 
(Dowell et al, 2002; Delwiche and Hareland, 
2004; Johnson, 1998). 

 
2.6. Development and validation of fumonisin 
quantification models 

 
The quantification models for fumonisin 

quantification were developed using multiple 
linear regression (MLR), partial least squares 
regression (PLSR), and principal components 
regression (PCR) algorithms applied to 
preprocessed spectra data.  A total of 100 spectra 
data were divided into 75% training data for 
calibration model development and 25% 
validation data for testing the model.  LC-MS/MS 
reference measurements for fumonisin 
quantification were compared and correlated with 
Raman spectra through the developed models. 
PLSR and PCR algorithms were a spectral 
decomposition technique that include as much as 
information possible in the spectra data into the 
first few factors. The predictive ability of PLSR 
and PCR models were tested by a cross-validation 
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method using the leave-one-out option. The 
optimum number of factors included in the 
models was determined based on the predicted 
residual sum of squares (PRESS), and the 
coefficient of determination (r2). In MLR analysis, 
the inclusion and optimum number of 
wavelengths for the calibration equation were 
assessed using a stepwise regression and R2 
selection (RSQUARE) methods and comparing 
statistical parameters including partial r2 values, 
partial F-values, and PRESS. The models 
performance were validated using the root mean 
standard error of prediction (RMSEP) and 
correlation coefficient of determination (r2) using 
the external data set. 

 
2.7. Statistical analyses  

 
The fumonisin concentrations predicted by 

chemometrics models were evaluated and 
compared with the results of reference LC-
MS/MS using paired sample t-test, Pearson’s 
correlation coefficients, and ratio of the standard 
deviation of the reference values to the standard 
error of cross-validation values (RPD). All data 
analyses and modeling for classification and 
quantification of fumonisin contamination were 
performed using SAS® v 9.1.3 (SAS® Institute, 
Inc., Cary, NC). 
 

3. Results and discussion 
 
3.1. Spectra data analysis   
 

Fumonisin concentrations measured in the 
samples for chemometrics models were in the 
range of 2 to 99 mg/kg, with a mean of 32.5 
mg/kg. A positive skewness of the sample set 
indicates an asymmetrical tail towards higher 
fumonisin concentrations as evident by a median 
concentration of 24.5 mg/kg. The training and 
validation data set yielded similar descriptive 
statistics for fumonisin concentration. The defined 
data set should cover the range of fumonisin 
concentrations found in most raw and processed 

maize products, and thus is considered suitable to 
develop the model more useful and representative. 

The Raman preprocessed spectra (including 
baseline correction, normalization, the first and 
second derivatives, and deconvolution) enhanced 
characteristic Raman absorption bands, improving 
classification and predictive accuracy of the 
models. Preprocessing Raman spectra reduces 
nonchemical biases (e.g., scattering and particle 
size effects) to eliminate irrelevant chemical 
information and to extract only meaningful 
information (Byler and Susi, 1988; Gowen et al, 
2007; Liu et al, 2009). However, it may also 
amplify spectra that do not reproduce the true 
band intensities. Fig. 1 shows the difference 
between non-contaminated and contaminated 
fumonisin samples resulting from subtracting 
averaged spectrum of fumonisin negative samples 
(Group 1) from contaminated ones (Groups 2, 3, 
and 4). Specific biochemical changes due to fungi 
attack on maize were more obvious in the 
difference spectrum than in the absolute spectrum. 
Raman intensity difference in fumonisin level is 
often not very visible between low contaminated 
and non-contaminated samples; however, the 
spectra may differ in color, chemical, physical, 
and structural properties of samples.   

In this study, Raman intensity differences were 
distinctive between the four groups of samples 
over the entire region of Raman spectra.  Careful 
examination of the spectra showed some 
variations associated with fumonisin 
concentrations. Fig. 1 shows that Raman intensity 
of fumonisin samples tended to decrease as 
fumonisin concentration increased in spectral 
regions: 428−540 cm-1, 904−948 cm-1, 1012−1176 
cm-1, 1264−1476 cm-1, and 1580−1800 cm-1.  

The other spectral regions included Raman 
bands generated by the fungal cellular compounds. 
The spectral variation within and between groups 
appeared to be sufficient to produce the models 
with higher classification and quantification 
accuracy. Qualitative spectral difference was more 
observable and visualized in first and second 
derivative data.  
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Most significant Raman bands associated with 
fumonisin effects in maize were observed in the 
starch regions, around 460−510  cm-1 and 1072−1148 
cm-1 (Table 1). Raman band intensity in the given 

 

 

 
 

Fig. 1.  Averaged Raman subtractive spectra of fumonisin 
contaminated samples (Groups 2, 3, and 4) from the 
averaged spectrum of fumonisin negative samples (Group1): 
(A) normalization; (B). 1st derivative; (C) 2nd derivative; 
and (D) deconvolution. 

regions decreased with fumonisin concentration 
and the individual wavelengths showed higher 
correlation coefficients, PCA factor loadings (data 
not shown), and regression coefficients of PLS 
models (Fig. 2) for fumonisin concentrations than 
those in other regions. The Raman bands at 480 
cm-1 and 1084 cm-1 are associated with pyranose 
ring of glucose unit and C-O-H bending in starch, 
respectively (Kizil et al, 2002; Tu et al, 1979). A 
strong Raman band at 1128 cm-1 corresponds to 
C-O stretching and C-O-H bending. Distinctive 
Raman bands appear to reflect increased 
fumonisin concentrations in maize include 844 
cm-1 (C-C stretching), 868 cm-1 (CH2 vibration), 
1264 cm-1 (=C-H symmetric rock), 1488 cm-1 (C-
H bending), and 1776 cm-1 (C=O vibration). 
These results indicate variations in concentrations 
of the main component and fumonisins in ground 
maize samples are measurable by Raman spectral 
changes.  

 
3.2. Classification of fumonisin contaminated 
maize samples  

 
Chemometric models to classify ground maize 

samples into contaminated and non-contaminated 
sample groups at different fumonisin 
concentrations were developed using the four 
preprocessed spectra data.  The performance of the 
models constructed using the Raman shift region of 
400−1800 cm-1 is summarized in Table 2. 
Regardless of preprocessed methods, all three 
calibration models showed a classification accuracy 
of 100% by the resubstitution method, in which 
misclassification rates are usually underestimated 
(Johnson et al, 1998). The KNN models for all 
preprocessed data achieved higher classification 
accuracies for both training and validation data.  
The PLSDA models showed higher percentages of 
correct classification rate (97.3−100.0%) for 
training data while rather lower classification 
accuracies (64.0−92.0%) were achieved for 
validation data.  The LDA models had higher 
classification accuracy (96.0−100.0%) for 
validation data, identical to the KNN models, but a 

(C) 

(D) 

(A) 

(B) 
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Table 1 
Raman band assignments for Raman spectra of fumonisin contaminated samples. 

Raman shift  (cm-1) Band assignments Referencea 
440 Skeletal modes of pyranose ring of glucose unit in starch 6, 7, 8, 13 
480 C-O vibration in starch 6, 7, 8 
760 C-C stretching in starch 7, 14 
844 C-C stretching 1 
860 CH and CH2 deformation in starch 4, 7, 8 
868 C-O-C skeletal mode 11 
940 Skeletal mode vibrations of α1-4 glycosidic linkage in starch 4, 7, 8, 13 

1084 C-O-H bending in starch 6, 7 
1128 C-O stretching, C-O-H bending in starch 7, 10 
1264 =C-H symmetric rock 5 
1268 CH2OH (side chain) related mode in starch 7,10 
1384 CH2 scissoring, C-H and C-O-H deformation in starch 6, 7 
1460 CH2 bending in starch 4, 6, 7 
1488 C-H bending 2, 3, 9 
1776 C=O vibration 2, 9, 12 

aCorresponding references for band assignments are as follows: 1. Arp et al, 2001; 2. Baeten et al, 1998; 3. Boca et al, 2012;  
4. Cael et al, 1973; 5. Howell et al, 2001; 6. Kizil and Irudayaraj, 2007; 7. Kizil et al, 2002; 8. Lee et al, 2010; 9. Móricz et al, 
2008; 10. Santha et al, 1990; 11. Schulz and Baranska, 2007; 12. Taddei et al, 2001; 13. Tu et al, 1979; 14. Wu et al, 2012. 

 
 

misclassification rate for training data set was 
higher than the other chemometrics models. 

In the KNN analysis, classification accuracies 
of the models became stable when the number of 
neighbors exceeded five. The model for normalized 
data achieved a classification accuracy of 100% for 
training data set, with corresponding validation 
classification accuracy of 100%. The rate of correct 
classification of the models for other preprocessed 
data was 100% for training data set, with 96% 
classification accuracy for validation data set. In 
these models, only one sample was incorrectly 
assigned to the group with fumonisin 
concentrations close to the group where the sample 
originates. The level of accuracy obtained with 
KNN models using Raman spectra is comparable 
with or superior to that reported in previous studies 
with near infrared spectrometer (Dowell et al, 2002; 
Pearson et al, 2004). When the developed KNN 
models were applied to validation data set, none of 
the fumonisin contaminated samples were 
misclassified as fumonisin negative. This was also 
observed in LDA and PLSDA models although 

they displayed lower classification accuracy than 
KNN models (Table 2). This zero misclassification 
of fumonisin positive samples as negative by 
Raman technique is vital for use as a high-
throughput test for screening samples, which may 
greatly help manage a risk of crop contamination 
and human and animal exposure to fumonisins. 

As mentioned earlier, LDA and PLSDA 
models exhibited the opposite trend in the level of 
classification accuracy for training and validation 
data set (Table 2). LDA models for the 
preprocessed data resulted in moderate 
classification accuracies for training data set and 
similar validation accuracy to the KNN models for 
validation data set. The PLSDA models  
could correctly classify fumonisin positive and 
negative samples with >97.3% accuracy for 
training data set.  However, when the models were 
applied to validation data set, the classification 
accuracy dropped significantly, particularly with 
2nd derivative data (64%). Difference in 
classification accuracy between training and 
validation data set may be in part attributed to the  
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Table 2  
Correct classification rate of fumonisin contamination groups at different concentration using chemometric models for 
different preprocessed spectral dataa 

Preprocessing 
method 

KNN  LDA  PLSDA 

Training 
(%) 

Validation 
(%) 

False 
negative 

error (%) b 

 
Training 

(%) 
Validation 

(%) 

False 
negative 
error (%) 

 
Training 

(%) 
Validation 

(%) 

False 
negative 
error (%) 

Normalization 100.0 100.0 0.0  92.0 100.0 0.0  97.3 92.0 0.0 

1st derivative 100.0 96.0 0.0  81.3 96.0 0.0  97.3 92.0 0.0 

2nd derivative 100.0 96.0 0.0  92.0 96.0 0.0  100.0 64.0 0.0 

Deconvolution 100.0 96.0 0.0  92.0 96.0 0.0  100.0 80.0 0.0 

a KNN,  k-nearest neighbor; LDA, linear discriminant analysis; PLSDA, partial least squares discriminant analysis.;  
b A false negative error (%) was defined as the failure of the model to classify fumonisin contaminated samples as 
negative (Group 1). 

 
fact that in PLSDA model, the sample is assigned 
to one of four groups for their predicted fumonisin 
content by PLS regression (Reeves and Delwiche, 
2008). In other words, the PLSDA was not 
developed for classification purposes (Pearson et 
al, 2001). Compared to other models, the PCDA 
models displayed a lower accuracy range of 
86.7−90.7% for training data set, 16−76% 
accuracy for validation data set (data not shown) 
and many contaminated samples were 
misclassified as fumonisin negative. High 
misclassification rate of the PCDA models 
typically results from spectral similarity leading to 
poor separation of samples in principal component 
scores and through the interference of Raman 
bands for fumonisins by other chemical groups. 
 
3.3. Quantification of fumonisin in maize samples  

 
  Multivariate data analysis provides a powerful 
tool for extraction of meaningful information to 
overcome some limitations in univariate 
techniques and to detect a small difference in 
spectra between contaminated and non-
contaminated samples and among contaminated 
samples with mycotoxins (Abramović et al, 2007; 
Kos et al, 2007; Liu et al, 2009). In a multivariate 
system, single spectra with high correlation 
coefficients with the reference data may be 

grouped and analyzed together. For the present 
study, three chemometrics (MLR, PLSR, and 
PCR) for all preprocessed spectra data at the 
Raman shift range of 400−1800 cm-1 were used to 
develop calibration models for fumonisin 
quantification to explain the relationships between 
fumonisin concentrations and Raman spectra. The 
results of chemometric models and statistical 
analysis applied to training and validation data are 
presented in Tables 3 and 4.  Some differences in 
the results were noticed among chemometrics 
models, and among preprocessed spectra data 
within each chemometric method. Although PLSR 
models performed slightly better than MLR 
models in predicting fumonisin concentration of 
the training data set, both PLSR and MLR models 
generally showed comparable results. Compared 
to these two chemometrics, the results of PCR 
models were not as good and displayed the least 
predictive accuracy. 

All MLR and PLSR models could explain 
>90% of variation in the preprocessed spectra data 
in both training and validation data, except for the 
models for 2nd derivative preprocessed data. The 
PCR models could predict the variation range of 
80−86% in the preprocessed data (Table 3). The 
MLR and PLSR models also displayed low error 
rates compared to the PCR models. However, the 
differences in prediction errors between training 
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and validation data set were larger in MLR and 
PLSR models than in PCR models, implying that 
MLR and PLSR models can be more affected by 
small spectral variations irrelevant to changes in 
the compositions of samples (Kim et al, 2008). 
MLR and PLSR models also produced stronger 
correlation coefficients with LC-MS/MS values 
and higher RPD values (Table 4), indicating better 
predictive performance than PCR models.   

The MLR models included the optimum 
wavelengths selected by testing all possible 
combinations of wavelengths and removing 
collinearity among highly correlated wavelengths 
to produce the best results (Broadhurst et al, 1996). 
According to the statistical results of slope, 
coefficients of determination (r2), RMSEC, and 
RMSEP in Table 3, normalized and deconvolution 
preprocessing appeared to be helpful in improving 
performance of the MLR models. Linear 
regressions of the MLR models for training data 
set showed high r2 and moderate error rate 
(RMSEC) values in the ranges of 0.856−0.932 
and 7.177−8.782 mg/kg, respectively. When the 
models were further applied to the validation data 
set to estimate the overall predictive accuracy, the 
models yielded similar performance and accuracy 
with acceptable levels of r2 (0.856−0.915) and 
slightly higher error rate (7.745−10.380 mg/kg). 
The slopes of the linear regressions were in the 
range of 0.884−0.977 for training and validation 
data set, indicating the acceptable quality of the 
regression and the reliability of some selected 
models. The MLR models also showed a good 
linear correlation (r = 0.925−0.957) (Table 4), 
implying a good agreement between Raman 
predicted and reference LC-MS/MS values.  
Selected wavelengths in the MLR models 
indicated the most influential wavelengths are 
associated with starch molecules. These 
observations indicate that a slight improvement of 
current MLR models by optimizing instrumental 
and measurement conditions may allow for 
accurately predicting low and high fumonisin 
levels in ground maize samples. 

The prediction results of PLSR models are 
displayed in Tables 3 and 4.  As in PCR, PLSR 

uses a few factors including information from all 
wavelengths in the spectra to predict a target 
analyte of interest (Cramer, 1993). This feature 
allows one to correlate Raman spectra with 
fumonisin concentration even when visual 
difference in the spectra is not significant among 
fumonisin contaminated samples. PLSR require 
fewer factors and more powerful than PCR to 
produce comparable results (Osborne et al, 1993). 
The optimum number of factors is determined by 
calculating the predicted residual error sum of 
squares (PRESS) using leave-one-out cross 
validation method for training data set. The 
calibration models yielded relatively higher r2 
values (0.930−0.975) and low error rate (RMSEC: 
5.016−7.165 mg/kg), with a linear regression 
slope in the range of 0.936−0.977, showing a good 
correlation between actual and predicted values. 
The calibration models applied to the validation 
data set produced a comparable quality of 
regression with slope range of 0.952−0.998, but a 
rather higher error rate (RMSEP: 8.231−9.607 
mg/kg). A high positive correlation (r > 0.929) 
plots of absolute values of correlation coefficients 
versus wavelengths for the PLSR models for 
normalized and 1st derivative data. This figure can 
provide additional information on particular 
spectral sub-ranges and peaks. Wavelengths with 
a larger coefficient value can contribute more to a 
calibration model (Balcerowska et al, 2009).  

In Fig. 2, larger values in spectral regions and 
peaks appeared to be associated with starch and 
fumonisin molecules, which is consistent with the 
findings described above. The PCR calibration 
models applied to validation data set displayed 
less predicting ability (r2 = 0.829−0.860 and 
RMSEP = 10.274−11.251 mg/kg) to measure 
fumonisin content compared to MLR and PLRS 
models (Table 3). 

Predicted values of three chemometric models 
were statistically compared with reference LC-
MS/MS data with paired sample t-test using 
validation data set (Table 4). Statistical results 
indicated there were no significant differences 
between the means of Raman and reference LC-
MS/MS method although predictive accuracy and 
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Table 3 
Predictive accuracy and error rates of three chemometric models fitted to preprocessed spectra data in predicting 
fumonisin concentrations in ground maize samples. 

Chemometrics  Preprocessing 
method 

Training data  Validation data 

RMSEC 
(mg/kg)a Slope r2c 

 RMSEP 
(mg/kg)b Slope r2c 

MLR Normalization 8.126 0.912 0.912  8.624 0.977 0.903 

 1st derivative 8.782 0.884 0.901  7.745 0.926 0.915 

 2nd derivative  8.101 0.912 0.856  10.380 0.916 0.856 
  Deconvolution 7.177 0.932 0.932  9.017 0.899 0.903 

PCR Normalization 11.336 0.830 0.830  10.274 0.913 0.859 

 1st derivative 10.445 0.852 0.842  10.426 0.858 0.860 

 2nd derivative  11.686 0.803 0.803  11.251 0.836 0.829 
  Deconvolution 11.132 0.834 0.836  10.991 0.885 0.838 

PLSR Normalization 5.832 0.955 0.955  8.730 0.967 0.905 

 1st derivative 7.165 0.937 0.930  8.231 0.954 0.910 

 2nd derivative  5.016 0.977 0.965  9.607 0.952 0.864 
  Deconvolution 6.977 0.936 0.936  8.729 0.998 0.900 

a RMSEC: root-mean-square error of calibration.; b RMSEP: root-mean-square error of prediction .; c r2: correlation coefficient of 
determination. 

 
 
 

Table 4 
Statistical results of paired sample t-test for difference between reference LC-MS/MS and Raman predicted values 

Parameters 
MLR  PCR  PLSR 

Norma 1 Db 2 Dc Decond  Norm 1 D 2 D Decon  Norm 1 D 2 D Decon 

Paired 
differences               

   Mean -1.79 -0.70 -2.83 -2.45  -2.34 -3.35 -2.03 -3.06  -2.89 -1.73 -2.64 -1.89 

   Std 
   deviation 8.53 7.80 9.98 8.77  10.25 9.98 11.06 10.61  8.22 8.24 8.89 8.13 

   Std 
   error mean 1.27 1.14 1.49 1.29  1.54 1.47 1.65 1.58  1.50 1.23 1.32 1.24 

re 0.950 0.957 0.925 0.950  0.927 0.928 0.910 0.916  0.952 0.954 0.929 0.948 

t-value 1.579 0.611 1.924 1.898  1.492 2.273 1.246 2.083  2.364 1.410 1.703 1.610 

Sig (2-
tailed) 0.122 0.544 0.061 0.064  0.143 0.028 0.219 0.043  0.022 0.165 0.096 0.115 

RPDf 3.082 3.449 2.519 3.123  2.596 2.562 2.399 2.393  3.504 3.264 2.771 2.947 
a Norm: normalized data.  b1D: 1st derivative data. c2D: 2nd derivative data. dDecon: deconvolution data. er: Pearson’s 
correlation coefficient.  f RPD: ratio of the standard deviation of the reference values to the standard error of cross-validation 
values. 
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Fig. 2.  Absolute regression coefficients of PLSR models for 
normalized (A) and deconvolution data (B). 

 
error were slightly different among chemometrics 
and preprocessed methods within each 
chemometric method. As expected, standard 
errors of MLR and PLSR models were slightly 
lower than those of PCR models. The significance 
levels of p-value and correlation coefficients close 
to one indicated the models yielded generally 
comparable results to LC-MS/MS method at 
levels tested in this work.  RPD values calculated 
by standardizing the RMSEP against standard 
deviation of the reference data in the validation 
data set showed the ranges of 2.519 to 3.449, 
2.393 to 2.596, and 2.771 to 3.504, for MLR, 
PCR, and PLSR models, respectively.  These RPD 
value ranges indicate that the models have a high 
predictive ability to differentiate between lower 
and higher fumonisin contaminated samples for 
screening (Armstrong et al, 2007; Williams, 
2001). These findings seem to imply that the 
developed models can readily predict fumonisin 

concentration and are comparable to conventional 
time-consuming chemical methods for fumonisin 
analysis within a specific fumonisin concentration 
range.  

In conclusion, the proposed Raman 
spectroscopic method combined with 
chemometrics has demonstrated its potential and 
challenges as alternative rapid and non-destructive 
technique for qualitative and quantitative 
determination of fumonisin levels in ground maize 
for screening fumonisin contaminated samples. 
Classification and quantification models showed a 
good predictive performance with a high overall 
accuracy and moderate error rate, offering 
significantly reduced risk of misclassification of 
fumonisin contaminated maize samples as 
fumonisin negative. These features may be 
desirable for real-time monitoring of critical 
performance attributes in controlling feed and 
food manufacturing processes utilizing 
contaminated maize as major raw or starting 
materials. Despite anticipating several difficulties 
and constraints in using this technique for 
fumonisin analysis, such as inaccuracy in the low 
concentration range and low-to-moderate 
repeatability and reproducibility of spectra, there 
may be numerous opportunities to improve the 
accuracy and precision of Raman spectroscopy 
measurements. The calibration models obtained 
from this study would be more stable and 
practically applicable by continuing to analyze 
maize samples with diverse genetic and 
environmental backgrounds and fumonisin levels. 
Raman spectroscopy as an easy, rapid, and 
inexpensive screening system for fumonisins and 
other mycotoxins can be a valuable adjunct tool 
for quality control of grains and oilseeds 
throughout the entire marketing chain to improve 
the safety of feed and food products supplied to 
consumers. 
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