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Abstract 

 

In virtual worlds, objects fall straight down.  By replacing a few lines of code 
to include Newton's gravity, virtual world software can become an N-body 
simulation code with visualization included where objects move under their mutual 
gravitational attraction as stars in a cluster. We report on our recent experience of 
adding a gravitational N-body simulator to the OpenSim virtual world physics 
engine.  OpenSim is an open-source, virtual world server that provides a 3D 
immersive experience to users who connect using the popular “Second Life” client 
software from Linden Labs.  With the addition of the N-body simulation engine, 
which we are calling NEO, short for N-Body Experiments in OpenSim, multiple 
users can collaboratively create point-mass gravitating objects in the virtual world 
and then observe the subsequent gravitational evolution of their “stellar” system.  
We view this work as an experiment examining the suitability of virtual worlds for 
scientific visualization, and we report on future work to enhance and expand the 
prototype we have built.  We also discuss some standardization and technology 
issues raised by our unusual use of virtual worlds. 
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All too often visualization is an afterthought in physics simulation.  Producing proper 
visualization tools is complicated (often more complicated than producing the simulation to be 
visualized) and uninteresting from the standpoint of physics.  Here we present a simple example 
of a visualization system for N-body gravitational dynamics built on top of the virtual world 
system OpenSim (The OpenSim Developers, 2008) an open-source version of the software used 
in Second Life. 

From the point of view of an astrophysicist dealing with gravitational N-body 
simulations, virtual worlds such as OpenSim are N-body simulators, with two extra features: a 
surprisingly elaborate graphics module and a bug in the equations of motion.  As to the latter: 
whereas objects should attract each other via Newton's inverse-square law of gravity, objects in 
OpenSim fall straight down.  However, that “bug” is easily fixed.  We have done so and we 
discuss our first results in this paper. 

Our visualization system, NEO, or N-Body Experiments in OpenSim, runs within the 
OpenSim server.  We allow users connected to the server to designate objects within the virtual 
world as “physical.”  Physical objects interact gravitationally as point masses.  A small amount 
of modified code in the OpenSim physics engine tracks the motion of physical objects under 
their collective gravitational forces.  OpenSim displays their motion along with the other objects 
and users in the virtual world.  OpenSim provides facilities for users to communicate with each 
other using text or voice, allows them to trade files or in-world objects, and allows easy creation 
and manipulations of in-world objects.  With a few hundred lines of code added the OpenSim 
physics engine, we have a 3D collaborative visualization system for experiments with point-mass 
gravitating systems. 

The OpenSim Platform 

OpenSim is an open-source C# program which implements the Second Life virtual world 
server protocol.  Running the popular Second Life client software from Linden Labs, users can 
connect to a computer or grid of computers running the OpenSim server and enter a virtual 
world.  Within this world users can share media—text, pictures, and video—interact with each 
other via text chat and voice communication, and create and share 3D objects in the world itself.  
The interaction occurs in real-time: at each moment, every logged-in user views the current 3D 
state of the server world.  Different users can manipulate this state simultaneously. 

The 3D, interactive nature of the OpenSim virtual world makes it an ideal substrate for 
collaborative visualization of scientific results and simulations.  The “hard” parts of collaborative 
visualization unrelated to the science—interactivity, 3D display, controls, etc.—are handled by 
the pre-existing OpenSim engine, leaving scientists free to focus on the best way to represent 
their scientific data within the virtual world. 
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Our gravitational simulation code, which we will discuss more fully in the next section, 
lives in the physics engine of OpenSim.  In “vanilla” OpenSim, the physics engine is responsible 
for tracking the positions and velocities of primitive objects and users, implementing effects such 
as falls, tumbles, and collisions.  The server requests the positions and velocities of all objects 
under its control from the physics engine ten times every second; clients wishing for a larger 
frame-rate use the velocities of the objects to extrapolate their positions at intermediate points. 

The Newtonian Physics Engine 

The physics engine of OpenSim handles the updating of the positions and velocities of all 
objects and avatars in the virtual world.  Though velocity information is not strictly necessary for 
a client to render a scene, it is used by the client to extrapolate the positions of prims and 
characters between updates from the server.  The standard physics engine is extremely simplistic.  
Prims are divided into two classes: physical and unphysical.  Physical prims feel the effects of a 
uniform gravitational field (that is, they fall straight down just as physical objects do on Earth), 
while unphysical prims simply move in straight lines with constant velocity.  Both types of prims 
can collide with other solid objects. 

We have modified the standard physics engine of OpenSim using a plugin.  Server 
administrators can select to replace the standard physics engine with our plugin at server-
initialization time, region by region.  (In OpenSim different servers correspond to different 
regions in the virtual world; administrators can choose to employ our plugin on a region-by-
region basis.)   The modified physics engine treats each physical prim as a gravitating point-mass 
in space; other objects are handled by dispatching to the standard physics engine.  We have 
implemented a variety of integration algorithms for time-advancing the resulting gravitational 
system in the Newtonian Physics engine: the Hermite algorithm (Makino, 1991) (the default), 
kick-drift-kick and drift-kick-drift leapfrog, and the GL3 algorithm (Farr & Bertschinger, 2007).1    

The current simulation is rudimentary.  We choose units so that G =1, M = mi =1
i

∑ , and 

the total energy of the system is E = − 1
4.  (These are the so-called “standard units” (Heggie & 

Mathieu, 1986).  In these units, the average inverse pair-wise separation in an equal-mass system 

of bodies is 1
rij

=1. The pair-wise gravitational potential is softened to prevent extreme two-

body interactions that destroy the accuracy of the integrator: 

V(r) = m1m2

r 2 + ε2
, 

where ε = 4
N ; N is the number of bodies in the system.  The softening ensures that the 

maximum two-body interaction potential, Vmax ≈ m1m2
ε = 1

4N , is of the same order as the 

typical equipartition kinetic energy of a body T ≈ E
N = 1

4N  in equilibrium.  Softening 

                                                        

1 For an introduction to writing N-body code, see Hut & Makino, 2009, especially “Moving Stars Around.”  For 
general background concerning self-gravitating systems, see Heggie & Hut, 2003 and for background concerning N-
body algorithms, see Aarseth, 2003. 



Journal of Virtual Worlds Research - VWs for Scientific Visualization 6 

6 
 

prevents any individual encounter between two bodies from changing the trajectories of either 
body too much, greatly simplifying the implementation of the simulation. 

In these natural units, the typical time for a body to cross from one side of a system to the 
other is of order unity.  The size of the system is also of order unity.  Using these dimensionless 
units, there is no need for conversion between “server time” and N-body time and “server 
length” and N-body length, so the user can see the system evolve on realistic time- and length-
scales.  (For example, the two-body relaxation timescale for a system with N ~ 30 is about 
tcr

N
0.1lnN ~ 250 seconds of real time.)  We can simulate about N ~ 50 bodies in this fashion 

on typical modern desktop hardware before the server cannot keep up with the necessary frame 
rates to the connected clients.  Though 50 bodies is small by modern simulation standards, such a 
system is sufficient to illustrate most of the physical behaviors important in larger systems before 
core collapse—evaporation, two-body relaxation, mass segregation, etc.  We could increase the 
maximum number of bodies that can be simulated by not demanding that the simulation and 
display remain synchronized at the cost of introducing significant complexity in the code.  

 
Examples 

 
This section, as an example, presents screenshots of an interaction in OpenSim simulating 

about 30 bodies starting from a cold initial condition.  In Figure 1, the avatar sets up an initial 
condition by creating a group of objects (by holding “shift” while dragging the movement bars, a 
pre-existing group of bodies can be copied).  Figure 2 captures the system a moment after the 
avatar has selected the “Physical” box; very soon after (on the free-fall timescale, which is of 
order one second in the simulator), in Figure 3, the two groups of bodies in the initial condition 
quickly collapse, forming the two clumps visible in the figure.  The simulation ends after about a 
minute of simulator time (a few tens of crossing times) in Figure 4, with a collapsed, nearly-
spherical cluster and a few almost-ejected stars in loose orbits.   

 

 
Figure 1: Establishing an initial condition. 
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Figure 2: When the user selects the "Physical" box, the system is scaled into standard units and the simulation begins. 

 

 
Figure 3: Two groups of bodies in the initial condition collapse into two clumps on the free-fall timescale. 
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Figure 4: After a few tens of crossing times (a few tens of seconds real time), the system settles down into a spherical 
cluster.  Some nearly-ejected stars can be seen orbiting the central mass of the cluster. 

Though this example shows only one avatar in view on a remote “desert island,” a similar 
simulation could, in principle, take place anywhere on an OpenSim grid, and any user present 
could collaborate to construct the initial conditions, discuss the outcome with other avatars, save 
data from the simulation, etc. 

 
Limitations and Future Work 

 

This section discusses some of the limitations of the current simulation engine, and 
highlights future work that promises to resolve them. 

The biggest limitation of the current engine is the size of the simulations it can run.  A 
system of 50 bodies is sufficient to illustrate the phenomena that are important in physically 
relevant simulations, but to study physical systems, simulations must be much larger.  The cost 
of a simulation of a quasi-equilibrium cluster of gravitating bodies over an evolutionary 
timescale grows approximately as N3; it is not reasonable to expect to perform physically 
relevant simulations in real-time on a virtual world server.  To address this limitation, a 
collaboration between the National Institute for Informatics and the National Astronomical 
Observatory of Japan (The AstroSim Project, 2009) is preparing a visualizer that allows users to 
re-play a simulation conducted on a more powerful computer inside a virtual world; this 
harnesses the speed advantages of specialized hardware (e.g. the GRAPE-DR Project, 2008) for 
the simulation, and the collaborative advantages of virtual worlds for the visualization. 

Even with the size limitations inherent in the server-based simulation engine we describe, 
it can still be an useful tool for education and enhanced understanding of the microphysics of 
self-gravitating systems.  It would be more useful for these purposes, however, if it had the 
capability to start systems in more varied initial conditions.  Currently, the system only permits 
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cold (i.e. zero velocity) initial conditions for systems of bodies that must be constructed by hand 
in the virtual world.  Ideally, it would permit the specification of arbitrary initial conditions 
(perhaps via a notecard) and the quick creation of various analytically determined distributions 
of stars.  Work is in progress to permit this. 

Finally, further control over the simulation would be desireable.  At a minimum, one 
should be able to pause and restart the simulation easily—currently, this requires de-selecting the 
physical property for all bodies in the simulation).  It would also be nice to add discrete physical 
events by hand (i.e. insert or remove stars from the simulation, change the mass of stars which 
“go supernova,” etc).  Work is in progress to add a simplified control panel that appears in the 
virtual world. 

The work reported here has been carried out during the summer of 2008 in Tokyo at the 
National Astronomical Observatory of Japan.  Since then, we have continued our work in 
collaborations that involve several co-workers at the National Institute for Informatics, also in 
Tokyo, and other co-workers whom we met with regularly in the Meta Institute for 
Computational Astrophysics (MICA) in Second Life (see http://www.mica-vw.org/; Djorgovski, 
et al., 2009a & 2009b; Nakasone, et al., 2009).  Most recently, we are conducting a weekly 
workshop to discuss the use of virtual worlds for stellar dynamics, in collaboration between 
MICA and Kira (http://www.kira.org/; see  

http://www.kira.org/index.php?option=com_content&task=view&id=124&Itemid=154).   

 
Issues for Technology and Standardization 

Our unusual use case and implementation techniques for the N-body physics engine raise 
a number of issues related to technology and standardization.  In this section, we attempt to 
identify some of these issues. We discuss these issues in the context of our N-body physics 
engine, but they would be relevant for any scientific simulation conducted in a virtual world. 

The data in our simulation are unusual for a virtual world.  Instead of complicated, 
unmoving structures, we have simple structures executing complicated motion.  How can we 
store the history of the bodies’ motion in the virtual world? Would it be possible to represent that 
history itself as an object in the virtual world?  Could avatars trade N-body systems with each 
other?  What about transfer of systems from one virtual world to another?  

If we wish to visualize multiple N-body systems, for example, while teaching a class, we 
need a way to ensure they don’t interfere with each other.  We may also wish to verify that a 
simulation has really been isolated during its run, without the rest of the world providing 
additional influences on the motions of the stars.  This may call for a way to isolate different 
parts of a virtual world from each other for a time to minimize the effects of one on the other.   

The simulations we are running can be arbitrarily demanding on the server CPU (to 
simulate N bodies takes time proportional to N2).  This allows for the possibility of an 
inadvertent overload on the server, which could in practice resemble a denial-of-service attack 
against the virtual world server.  Should we just limit the number of objects an user is allowed to 
create and simulate?  Degrade the quality of the simulation dynamically according to server 
load?  Treat server CPU as a resource that users must request and manage specifically? 
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Our application is heavily customized, targeting only OpenSim.  Currently, no standard 
interface exists for writing plugins to modify the behaviors of the common components of virtual 
worlds.  Should such interfaces be standardized?  What would such a standard look like?  What 
would be the risks in opening up the infrastructure of the virtual world to external modification?   

Similarly, the procedure to install our application in an OpenSim instance is unique.  
Could this be standardized?  If standardized, would a common installation procedure apply only 
to OpenSim, or for other virtual worlds as well?  A standard plugin installation procedure could 
make these sorts of modifications available to more users, but most OpenSim server 
administrators are probably sophisticated enough to not be deterred by a slightly customized 
installation procedure.  

As discussed above, the poor scaling of the computational cost of an N-body simulation 
with the number of bodies probably requires that any large simulations be performed on a 
different computer than the virtual world server. The results of such simulations can be passed to 
the server, which can then provide them to the attached clients for presentation.  However, even 
though the computational load on the server is minimized in this architecture, the data load could 
be considerable, particularly when many clients demand the simulation data.  Should standards 
be created allowing a server to refer clients to another source for some of the data they are to 
display?  What about a standard for clients sharing data among themselves to reduce the load on 
the server and the external data source?  What are the possible security implications?  This 
bandwidth problem is not unique to scientific simulation applications for virtual worlds, but such 
applications often deal with exceptionally large datasets and therefore the problem is relatively 
more important for these applications. 

While a great amount of thought has been put into technology and standards for the 
typical use of virtual worlds, the types of uses we discuss here are just beginning to be explored.  
For the reasons we discuss above, we think that the future holds great promise for the use of 
virtual worlds as visualization and simulation platforms.  As such uses become more common 
the issues in this section—and others—must be addressed. 

Conclusion 
 

We have reported on our experience adding a gravitational N-body simulator to 
OpenSim.  The simulator exists as a modification of the standard physics engine of OpenSim, 
and is notable for its simplicity.  Nevertheless, the resulting simulation environment can 
“piggyback” on all the collaboration features of the OpenSim virtual world to provide a multi-
user, interactive environment.  We anticipate that this sort of rich collaboration is the future of 
scientific visualization and we argue that virtual worlds provide an ideal substrate on which to 
base such visualization systems.  The work described in this paper has barely scratched the 
surface of the capabilities of such a system, yet provides a compelling example of the suitability 
of this approach for creating visualization tools by a quick retooling of the existing infrastructure 
of a virtual world. 
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