
Page 1 of 25

Performance and Scalability of a Large-Scale
N-gram Based Information Retrieval System

Ethan Miller, Dan Shen, Junli Liu, and Charles Nicholas
University of Maryland Baltimore County
{elm,dshen,jliu,nicholas}@csee.umbc.edu

ABSTRACT

Information retrieval has become more and more important due to the rapid growth in the
amount of all kinds of information. However, there are few suitable systems available.
This paper presents a few approaches that enable large-scale information retrieval for the
TELLTALE system. TELLTALE is an information retrieval system that provides full-text
search for text corpora in which documents may be garbled by OCR (Optical Character
Recognition) or transmission errors, and that may contain multiple languages. Given a
kilobyte query document, Telltale can find similar documents from within a gigabyte of
text data in 45 seconds on an ordinary PC-class machine. This remarkable performance is
achieved by integrating new data structures and gamma compression into TELLTALE.
This paper also compares several different types of query methods such as tf.idf and incre-
mental similarity to the original technique of centroid subtraction. The new similarity
techniques give better execution-time performance, but at some cost in retrieval effective-
ness.

1 Introduction

Scientists, researchers, reporters and the rest of humanity all need to find documents relevant to
their needs from a growing amount of textual information. For example, it was recently reported
that the World Wide Web has over 320 million indexable pages containing over 15 billion words
[1], and is growing at an astonishing rate. As a result, information retrieval (IR) systems have
become more and more important. However, traditional IR systems for text suffer from several
drawbacks, including the inability to deal well with different languages, susceptibility to optical
character recognition errors and other minor mistakes common on the WWW. This paper
describes our successful efforts to apply traditional techniques to an n-gram based IR system,
showing which methods work, which don’t, and describing new techniques we implemented for
n-gram based retrieval.

The TELLTALE information retrieval system [2] was developed to address these concerns.
TELLTALE uses n-grams (sequences of n consecutive Unicode characters) rather than words as
the index terms across which retrieval is done. By using statistical IR techniques, the TELLTALE
system can index text in any language; the current version has been used unmodified for docu-
ments in English, French, Spanish, and Chinese. Additionally, character n-grams provide resil-
ience against minor errors in the text by allowing matches on portions of words rather than
requiring the entire word to match.

Previously, however, the TELLTALE system was unable to index large volumes of text. While
traditional word-based IR systems have a number of tricks and tools at their disposal, many of
these methods must be modified or discarded when used in n-gram based systems. By using the
techniques described in this paper, we were able to construct an n-gram based IR engine that per-

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 2 of 25

mitted full-document queries against a gigabyte of text. Both the size of the corpus and the speed
with which our methods operate allow such a query to complete in a few seconds on inexpensive
PC-class hardware. These improvements represent a hundred-fold increase in corpus size over
earlier versions of TELLTALE. Moreover, the compression techniques we adapted from word-
based IR systems reduced the size of the index file from seven times larger than the text corpus to
approximately half the size of the original text, a fifteen-fold improvement.

2 Background

Our work builds on a large body of research in information retrieval covering both traditional
word-based IR systems and systems based around n-grams. In this section, we discuss some of the
most relevant previous work. Of course, a full treatment of prior work in information retrieval
would require a full book (if not more), and such texts exist [3,4].

2.1 Word-based information retrieval systems

There are many information retrieval systems in existence, but space prevents us from mentioning
more than a small selection. We will only discuss four of them: INQUERY, MG, SMART and
TELLTALE; the reader is referred to [3] and [4] for a more detailed treatment of information
retrieval systems.

2.1.1 INQUERY

The INQUERY system is a product of the Center for Intelligent Information (CIIR) at the Univer-
sity of Massachusetts at Amherst. INQUERY [5] uses a probabilistic model of information
retrieval, based on Bayesian networks [6]. In the probabilistic model, the estimated relevance of a
document to a query is a function of the (estimated) probabilities that each of the various terms in
the document occur in at least one relevant document but in no irrelevant documents. Because a
Bayesian network is a graphical model that encodes probabilistic relationships among variables of
interest, it makes a good framework for this style of model.

INQUERY builds two sorts of network, namely a document net and a query net. The document
net is static for a given collection. Nodes representing documents are connected to nodes repre-
senting terms. The query net is constructed by connecting terms in the query to nodes representing
how those terms should be combined in relevant documents. To perform retrieval, the system
connects these two networks together, and calculates the conditional probability that the informa-
tion needed exists in a given document. The system then ranks the documents by this probability.

For more information on INQUERY, we refer the reader to the CIIR web site. In particular, the
demo page lets the user try INQUERY on a number of different corpora. (http://ciir.cs.umass.edu/
ciirdemo/).

2.1.2 SMART

SMART [7], developed by Gerard Salton and his students at Cornell University, uses a vector
space model for representing documents. SMART performs automatic indexing by removing
stopwords (words that are too common to be useful in distinguishing between documents) from a
predetermined list, stemming (the process of removing prefixes and suffixes from words in a doc-
ument or query), and term weighting. Given a new query, SMART converts it to a vector, and

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 3 of 25

then uses a similarity measure to compare it to the documents in the vector space. SMART ranks
the documents, and returns the top n documents, where n is a number determined by the user.
SMART can perform relevance feedback, a process of refining the results of retrieval using a
given query, based on the results of the retrieval process.

The disk space requirements for the indexed collection are roughly 0.8 times the space of the text
version. This space includes a dictionary, display information, and both an inverted file and a
sequential representation of the indexed documents.

2.1.3 MG (Managing Gigabytes)

MG (Managing Gigabytes) [4] is a full-text retrieval system that gives fast access to a collection
of documents while requiring far less storage space than the original documents. It is a word-
based information retrieval system, using words as the basic terms on which matching and lookup
are performed. MG uses a vector space model that represents documents and queries as vectors of
term frequencies. Stemming, stopword removal, and tf.idf term weighting are used to keep the set
of index terms small, and to improve retrieval effectiveness.

The MG system has two main parts: a program that turns a collection of documents into a com-
pressed and indexed full-text database, and a program that services several types of interactive
queries for words that appear in the documents. By default, queries are Boolean and are con-
structed using a collection of terms linked by the Boolean operators AND, OR, and NOT. MG
also supports ranked queries, which take a list of terms and use frequency statistics from the doc-
uments to determine which of the terms should be given the most weight when they appear in a
document.

2.2 N-gram based information retrieval using TELLTALE

TELLTALE [2,8] provides full-text information retrieval from text corpora using a hypertext-
style user interface. The most important difference between TELLTALE and the systems
described above is that TELLTALE is n-gram-based while the others are word-based. Because of
its use of n-grams, TELLTALE has some unique features including language independence and
garble tolerance. These features and others will be discussed in this section.

2.2.1 N-gram basics

An n-gram [9] is a character sequence of length n extracted from a document. Typically, n is fixed
for a particular corpus of documents and the queries made against that corpus. To generate the n-
gram vector for a document, a window n characters in length is moved through the text, sliding
forward by a fixed number of characters (usually one) at a time. At each position of the window,
the sequence of characters in the window is recorded. For example, the first three 5-grams in the
phrase “character string” are “chara”, “harac” and “aract”.

The concept of n-grams was first discussed in 1951 by Shannon [10]. Since then, n-grams have
been used in many areas, such as spelling-related applications, string searching, prediction and
speech recognition. (In speech recognition, phoneme n-grams are used instead of character n-
grams.)

For a given corpus, a word-based system may need much fewer index terms than a system based
on n-grams. A word-based system may need fewer index terms for several reasons. First, for a

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 4 of 25

given corpus and n>3, the number of unique words is smaller than the number of unique n-grams,
as shown for example in Figure 1. Second, stemming techniques can be used in word-based sys-

tems. Stemming is a process that removes prefixes and suffixes from words in a document or
query before placing them in the index. For example, a group of words with the same root, such as
“walk”, “walked”, “walker” and “walking,” will be mapped to the same index term, namely
“walk.” This reduces the size of the index set further, and also frees the user from needing to
match the particular form of a word in a query and document. Finally, most word-based systems
allow the removal of stopwords, which are words that occur often enough in every document so as
to be of no use in distinguishing one document from another. Stopwords therefore are not helpful
for retrieval, and are usually removed from queries as well as documents. Word based systems
therefore have an advantage in terms of a smaller number of terms to be indexed.

On the other hand, there are several advantages to using n-grams. First, the system can become
more garble tolerant by using n-grams as terms. If a document is scanned using OCR (Optical
Character Recognition), there may be some missing or misread characters. For example, suppose
“character” is scanned as “claracter”. A word-based system will not be able to match this word
because it is misspelled, but an n-gram based system will still match the other n-grams such as
“aract”, “racte”… and take their frequency into account. Pearce found that n-gram retrieval was
still useful even when the garble rate was as high as 30% [3].

Second, by using n-grams the system can achieve language independence. In most word-based
information retrieval systems, there is a level of language dependency. Stemming and stoplist
processing are both language specific. Furthermore, one cannot assume that words are always
separated by spaces. For example, in some Asian languages, different words are not separated by
spaces, so a sentence is composed of many consecutive characters. Grammar knowledge is

Figure 1. Number of unique terms (words and n-grams) in various subsets of the AP corpus.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 5 of 25

needed to separate those characters into words, which is a very difficult task to perform. By using
n-grams, the system does not need to separate characters into words.

An n-gram based system does not require a separate stopword removal process. Ekmekcioglu
showed that stopword removal and stemming are give superior results in word-based systems, but
do not improve results in n-gram based systems, because the use of n-grams provides similar ben-
efits[11]. If a word or phrase occurs frequently in a collection, then so do its corresponding n-
grams, and the n-gram term weighting and similarity calculations take this into account. Words
derived from the same root word tend to generate many of the same n-grams, so a query using one
form of a word will help cause documents containing different forms of that word to be retrieved.
The sliding window approach allows us to capture n-grams corresponding to words, as well as
pairs of words. The n-gram “of co”, for example, is the first n-gram in the phrase “of course.” An
n-gram based system such as TELLTALE can therefore mimic stemming, stopword removal, and
phrase indexing by using properties of n-grams.

In summary, most information retrieval systems are based on words, and employ stopword
removal and/or stemming to reduce the number of index terms. N-gram based IR systems tend to
have a larger number of index terms, but they provide a level of language independence and gar-
ble resistance that is important in many applications.

2.2.2 Document similarity computation

Similarity is the measure of how alike two documents are, or how alike a document and a query
are. In the vector space model, this is usually interpreted as how close their corresponding vector
representations are to each other. One way of determining this is to compute the cosine of the
angle between the vectors.

In TELLTALE, each document is represented by a vector of n-grams. That is, a particular docu-
ment is identified by a collection of n-grams . For each n-gram, a count

 records how many times occurred in document . The frequency of is

its count normalized by the total number of n-grams in document , or . The

weight of each n-gram is the difference between and the average normalized frequency over

all documents for . This provides a weight for each n-gram in a document

relative to the average for the collection. A document is then represented as a vector

, where the individual elements have been normalized

and the n-gram’s average value has been removed. The similarity between two document vectors

 and is then calculated as the cosine of the two representation vectors,

.

i ngram1 ngram2 …, ,

cik ngramk i fik ngramk

cik mi i cik mi⁄

fik

ak fik
i

∑= ngramk

di di1 di2 …, ,()= dik cik mi⁄() ak–=

di dj

SIMc di dj,()
dikdjk()

k
∑

dik
2

k
∑ djk

2

k
∑

------------------------------------=

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 6 of 25

Since when the vectors are colinear and when the vectors are orthogo-
nal, the similarity measure can be taken as the cosine of the angle between the document and
query vector — the larger this cosine value, the greater the similarity.

2.2.3 Multilingual operation

The language independence of TELLTALE is achieved by its n-gram techniques, unique algo-
rithms, Unicode [12] and display system based on Tcl/Tk [13]. As mentioned in Section 2.2.1,
using n-grams can eliminate language-dependent features because the program need not know
about grammar for stemming, stopwords, or even matters as simple as where to break individual
words. In languages such as German, for example, words are often built from smaller words with-
out including spaces between them. A German IR system would thus have to know how to break
up a long word, or risk missing similarities between long compound words. For TELLTALE,
however, this is not a problem because the text is broken into relatively short sequences of charac-
ters without knowledge of where individual words begin or end.

Second, the algorithms used in TELLTALE are independent of the language texts to be analyzed.
We have found that our algorithms work well not only for English, but also for other languages
such as Spanish and Chinese. We do not rely upon particulars of the English language to attain
good retrieval accuracy.

Third, TELLTALE uses Unicode to represent a character. Unicode [12] is a 16-bit encoding stan-
dard in which each character is represented in two bytes. This encoding is necessary because
many Asian languages require 16 bits for each character; one byte has no meaning in those lan-
guages. Thus, the use of Unicode in the algorithms is necessary to achieve language indepen-
dence. While it may be necessary to convert a document from “native” format into Unicode, such
conversion is mechanical. In this paper, storage requirements are expressed in units of bytes.
Therefore, if a document consists of 500 Unicode characters, it requires 1000 bytes of storage.
The user interface renders each (odd, even) pair of bytes as a single Unicode character.

TELLTALE’s fourth advantage is Tcl/Tk’s ability to use non-English fonts. This allows us to
quickly build a system that has the ability to display a variety of fonts, such as Russian, Hebrew,
and Chinese. Using this ability, the system can display documents in their native scripts.

2.2.4 TELLTALE interfaces

Because TELLTALE has a Tcl/Tk interface, implementing the user interface was relatively easy.
A sample view of the interface is shown in Figure 2. The interface has several main areas. These
include the main document window (A), the query text window (B), the document list (C), the sta-
tus area (D), and various controls (E). Additionally, the interface supports the execution of Tcl/Tk
commands via a small floating window.

When TELLTALE is first started, a user can initiate a search either by listing all documents and
selecting the one he or she wants or by entering some text into the query window and finding doc-
uments “similar” to the entered text. In response, TELLTALE shows a ranked list of all docu-
ments that satisfy minimum similarity criteria specified by the controls. If the user clicks on one
of the documents in the list, the full text of the document will be displayed in the document win-
dow. We refer to the interface as “hypertext style” since one can use mouse clicks to move from
one document to another. Document similarity provides an implicit linking mechanism. The

θ()cos 1= θ()cos 0=

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 7 of 25

searching process can be continued by either looking for documents similar to the one in the doc-
ument window or by cutting some of the document text and pasting it into the query window. Of
course, other text can be used in the query in addition to or instead of text from the displayed doc-
ument. This method allows the user to incrementally approach the documents that match his or
her needs. The user may also limit the documents selected by changing minimum similarity
thresholds.

The display also includes status information about the TELLTALE system. This information
includes corpus statistics such as the amount of text indexed, the number of unique n-grams, and
the number of postings. (For each term, there is a list of documents in which that term occurs.
This list is known as the postings list, and each entry in that list is a posting.) It also includes
memory usage statistics, which are useful when trying to configure TELLTALE for best memory
performance.

3 Approaches to large-scale retrieval in TELLTALE

Because TELLTALE is n-gram based and the number of n-grams in a document is in general
much larger than the number of words in the same document, the index for TELLTALE is much
larger than that of a word-based system. Thus, building a large-scale n-gram based retrieval sys-

Figure 2. TELLTALE’s graphical user interface.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 8 of 25

tem is a technical challenge. In this section, we describe how we increased the capacity of TELL-
TALE to handle queries against gigabyte-sized corpora in a reasonably short time.

All of the performance measurements reported in this paper were made on a Silicon Graphics
Origin200 with two 180 MHz MIPS R10000 processors, 256 MB of main memory, and 32 KB
each of instruction and data cache. While this may seem an impressive machine, it is currently
possible to purchase a more powerful machine relatively inexpensively from commodity PC ven-
dors. Thus, we expect that our techniques will be applicable to those who can’t afford large-scale
computers as well as to those who can.

3.1 Textual data used in experiments

To allow practical comparison of various algorithms and techniques, we performed our experi-
ments on real-world collections of data obtained from TIPSTER [14], a DARPA (Defense
Advanced Research Projects Agency)-funded program of research and development in informa-
tion retrieval and extraction. The TREC [15] (Text REtrieval Conference) is part of the TIPSTER
Text Program, and provides a very large text data collection. Three types of text data from TREC
are used in this paper: a selection of computer magazines and journals published by Ziff-Davis
(ZIFF), the Associated Press newswire (AP), and the Wall Street Journal (WSJ). Here we use
ZIFF1 to represent the collection from 1989's ZIFF, ZIFF2 to represent the text data from 1988,
AP1 to represent the text data from 1989's AP, AP2 to represent the data from 1988 and WSJ to
represent the data from 1989's Wall Street Journal.

Every corpus is composed of tens or hundreds of individual files, each of which averages one
megabyte in length and contains one or more documents. Individual documents within a file are
marked up with SGML (Standard Generalized Mark-Up Language) tags. The overall characteris-
tics of the corpora on which we ran experiments are summarized in Table 1. Note that the figures
for unique and total n-grams are calculated for n = 5; we used this value for n in all of our experi-
ments. We chose n = 5 because this value of n gives reasonable retrieval performance (precision
and recall) without requiring too much memory.

3.2 Data structures

The data structures used in TELLTALE are similar to those used in other information retrieval
systems, but with modifications to make them efficient for managing tables of n-grams that are
considerably larger than the word-based tables used elsewhere. Over the course of our work,
structures evolved from relatively simple solutions to more advanced mechanisms that allow

ZIFF1 (1989) ZIFF2 (1988) AP1 (1989) AP2 (1988) WSJ (1989)

Documents 75,029 56,903 83,719 78,789 12,046

Unique 5-grams 562,492 498,653 499,807 478,519 268,810

Total 5-grams 185,159,683 134,110,587 202,636,790 186,822,009 31,863,179

Size (MB) 257 180 260 240 40

Table 1. Statistics for the document collections.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 9 of 25

TELLTALE to index gigabytes of textual data, a hundredfold increase over its original capacity
as reported in [8].

3.2.1 In-memory data structures

The first set of data structures in TELLTALE are in-memory data structures similar to those used
in traditional word-based IR systems. The three hash tables represent all of the information gath-
ered from the raw text scanned into TELLTALE. There is one hash table for n-grams, one for
document information, and a third detailing information about the files that contain the docu-
ments. The relationship between these three hash tables is shown in Figure 3. While all three data
structures are crucial to TELLTALE, the n-gram hash table and associated postings lists consume
by far the largest portion of memory.

The file hash table provides a link between documents and the files that contain them. While it
would be possible to fold this information into the document hash table, storing it separately
results in a large memory savings at little cost because file names are long. For example, a corpus

Figure 3. Relationships between hash tables in TELLTALE.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 10 of 25

with 500,000 documents at 2 KB apiece might pack an average of 500 documents into each 1 MB
file. If file names average 60 bytes in length, the file table requires 60 + 4 = 64 bytes of data and 4
bytes of overhead per file for a total of just 64 KB of storage. On the other hand, storing a file
name with each document requires over 3 MB. Thus, large corpora benefit greatly from the sav-
ings provided by a separate file table. Additionally, this structure works well for systems that
don’t use traditional file systems. For example, a system might optimize performance for access
via the WWW by consolidating references to a single URL together. If several documents are
accessed from the same URL, then having a single pointer to that URL makes retrieval and cach-
ing simpler.

The document hash table contains information about each individual document. In addition to the
usual information such as document length and location (file and offset), the document table con-
tains a document serial number, which is allocated from a single integer incremented for each
document scanned in. Thus, the document serial number is guaranteed unique in a given corpus.
The document hash table also stores precomputed values for each document to assist in rapid sim-
ilarity calculations. As will be described below, precomputed per-document values greatly reduce
similarity calculation times for some similarity measures.

Additionally, each document in the hash table contains an identifier generated by cryptographic
hash. In the current version of TELLTALE, this hash is generated by MD5 [16], although there is
nothing to prevent switching to a different algorithm such as SHA [17]. This document ID is

probabilistically unique across all corpora, with a chance of collision below even for billions
of documents. Thus, the document ID can be used to uniquely refer to a document in a massive
environment that might contain tens or hundreds of TELLTALE engines. The document ID can
also be used to remove duplicate documents from corpora; since the ID is based on the docu-
ment’s content, identical documents will have identical IDs. Memory usage for the document
hash table is approximately 48 bytes per document, most of which is used to store the 128-bit (16

byte) document ID. In a system with documents, this means that 48 MB will be required to
store the document hash table.

The n-gram hash table is the central data structure in TELLTALE and, when the postings are
included, the one that requires the most memory. This data structure is the one that is hardest to
optimize for n-grams rather than words because of the far greater number of both unique n-grams
in the corpus and unique n-grams in a document. For example, a typical 1 MB file from the WSJ
corpus has around 300 documents with over 500,000 postings — one posting for each distinct n-
gram in a document. When terms are words, however, the same file has around 60,000 word post-
ings, a more than 8-fold reduction. It is this difference that makes it more difficult to build IR sys-
tems using n-grams rather than words as terms.

In TELLTALE, each posting contains a normalized frequency for n-gram k in document i, a
pointer to document i, and a pointer to the next posting for n-gram k. Thus, each posting requires
12 bytes on a machine that supports 32-bit floating point numbers and 32-bit pointers. It is the
space required for postings that consumes the lion’s share of memory for corpora of almost any
size. In typical documents, the number of unique 5-grams is about 65%-75% of the total number
of 5-grams, so a 4 KB document will have 2500 - 3000 unique 5-grams, resulting in

 bytes of storage. On the other hand, the word count for such a document will

10
9–

10
6

12 3000× 36000=

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 11 of 25

total perhaps 800 words with perhaps 400 different words — a reduction of an order of magni-
tude.

To obtain good performance on the cosine similarity using these data structures, we broke the
similarity formula down as follows:

.

Note that, in the final equation, all of the terms with the exception of the first term in the numera-
tor can be precalculated. The remaining term is non-zero only when a term appears in both the
query and a document in the corpus. Thus, we can precompute all of the “constant” expressions in
the formula for each document, and only need compute the sum of the term frequencies on the fly.
Because there are relatively few n-grams in common between any pair of documents, this calcula-
tion can be done quickly once the precomputation time has been invested.

Based on our experiments with sample data, scanning in 10 MB of text data requires 88.9 MB for
the resulting data structures. Using the data structures described above, TELLTALE can compute
the similarity against a 1 KB document in two seconds. The performance is good, but too much
memory is consumed.

The problem of memory consumption becomes worse as the corpus grows. In particular, the size
of the posting list grows dramatically while the other data structures grow considerably more
slowly. This is shown in Figure 4, which displays both the total memory consumed by each data
structure and the percentage of memory consumed by each data structure for varying corpus sizes
using 5-grams. As Figure 4 shows, by far the largest consumer of space is the postings list. Even
for a small corpus of 1 MB, the postings list consumes 75% of the space. For larger corpora, the
contribution of all other data structures shrinks further. By the time the corpus has reached 1 GB,
the postings list consumes over 6 GB of memory, while all other data structures combined use
less than 100 MB, or 1/60th the space. This is hardly unexpected — the number of unique n-
grams in a corpus grows slowly after the corpus reaches a certain size because the number of
unique n-grams in English (or any other language) grows rapidly for the first few megabytes of
text but considerably more slowly for additional text. Moreover, some combinations (such as
“zzyqv”) are unlikely to occur in any documents in a corpus, although this sentence itself shows
that any n-gram is possible in any document in a given language. In essence, the first few docu-
ments define the “vocabulary,” and later documents add few new n-grams to it. However, the

SIMc di dj,()
dikdjk()

k
∑

dik
2

k
∑ djk

2

k
∑

------------------------------------=

fik ak–() fjk ak–()()
k

∑

dik
2

k
∑ djk

2

k
∑

---=

fikfjk()
k

∑ fikak()
k
∑– fjkak()

k
∑– ak

2

k
∑+

dik
2

k
∑ djk

2

k
∑

---=

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 12 of 25

number of postings grows linearly in the number of documents, and consumes far more space
than document information or file information, both of which also grow linearly.

Because the postings list was clearly the largest impediment to scaling TELLTALE to handle
gigabytes, we spent most of our effort optimizing its usage. The following sections describe our
efforts.

3.2.2 On-disk data structures

The on-disk version of TELLTALE was developed to cope with the limitations of memory space
by moving the postings list from memory to disk. Only the main data structures — n-gram hash
table, document table, file table — are kept in memory. To accomplish this, TELLTALE gener-
ates an on-disk file to record all the information, including a posting list from the files scanned in.

We made several modifications to the original in-memory data structures to handle the on-disk
data structures. First, we added variables to each n-gram’s entry in the n-gram table to indicate
where the postings list is stored in the on-disk file and how long it is. This is only a minor change,
yet it increases the memory requirements by over 6 MB for a 1 GB corpus. However, it also
allows TELLTALE to rapidly access postings lists on disk with the penalty of just a single disk
seek.

The other change we made was to convert pointers in the in-memory data structures into integers,
adding a table to translate from the integers into actual entries for files or documents. This change
is necessary to allow the data structures to be stored to disk and retrieved, possibly with different
memory addresses. We considered using the document ID, which was generated by hashing the
document text, for this purpose. However, this ID requires 16 bytes of memory, which is too long

Figure 4. Space consumed by different data structures.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 13 of 25

to include in every on-disk posting. Instead, we used the serial number assigned to each docu-
ment. While this number is not unique across corpora, it is unique within a single on-disk file.
While its use makes merging corpora together somewhat more complex, it saves a great deal of
space; thus, we chose this option. A similar tactic was used to identify entries for particular files.
The resulting structures are identical to those shown earlier in Figure 3, except that integers rather
than pointers are used to link the tables together and the postings lists are stored on disk.

We chose to allow TELLTALE to operate in one of three modes: memory, update or ondisk.
The memory mode is basically identical to the original version of TELLTALE; the only change
is that the new version can load an on-disk corpus into memory and subsequently conduct similar-
ity searches on it. The other two modes deal with building (or changing) the index for a corpus,
and querying such a corpus, respectively. The update mode allows the system to create or
update on-disk files. In this mode, TELLTALE can record information about documents that have
been scanned in. The ondisk mode allows the user to issue queries against a corpus which has
already been indexed in update mode. In ondisk mode the system loads the document hash
table, file hash table and n-gram hash table header into memory. However, the posting list is kept
on disk, and each bucket of the posting list has table must be loaded into memory before it is used.
The format of the on-disk file is shown in Figure 5.

Building an index is a memory-intensive process. On a machine with 128MB of memory, for
example, we can only index 10 MB of raw text at a time. Indexing a larger corpus is therefore an
iterative process, in which text is scanned in 10MB chunks, indexed, and then the index is written
to disk and the next chunk of text read in. We use a Tcl script to automate the generation of a set
of on-disk files. We then use the TELLTALE function mergecorpus to merge this set of on-
disk files into one big on-disk file. Using this method, we can generate a 1 GB on-disk file con-
taining all the information for about 300 MB of raw text data. After the big on-disk file is gener-
ated, the usecorpus command can load the file table, document table, and n-gram hashtable
header into memory. We can then issue queries against this large corpus without having the mem-
ory space to read the corpus in its entirety into memory.

Figure 5. Format for an on-disk corpus index file.

Header
File Table

Document Info Table

N-gram Hash Table

N-gram Postings Lists

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 14 of 25

The file header records the general information for this file. It includes the number of corpus files,
documents and n-grams in this text data set. It also contains the start offset for the other parts of
the corpus index — file information, document information, n-gram index and n-gram postings
lists. Additionally, several per-corpus summary values are stored here. The remaining sections of
the on-disk file contain copies of the data stored in memory. However, the on-disk version must
use integers rather than pointers for internal references such as a “pointer” from a document’s
information to the structure describing the file that contains it. This conversion requires temporary
tables on reading and writing the data, but does not require permanent data structures.

The n-gram hash table is split into two pieces in the on-disk file, one that contains the “header” for
each n-gram bucket and the other listing all of the postings for the n-gram. This split is done so
that the headers can be easily loaded in by a sequential read while the postings buckets are read
from disk on demand. At 32 bytes per header, even a 1 GB text corpus indexed by 5-grams
requires only 32 MB for the n-gram header hash table. This contrasts with the several gigabytes
required for the postings list.

3.2.3 Performance

Using this naive strategy without compression, the on-disk file consumes 4.5-7 times the size of
the raw text data. When the amount of raw text is small, this rate is even larger because the table
of unique n-grams dominates the size of the on-disk index. As the corpus grows, however, the
number of unique n-grams grows much more slowly, allowing the postings lists to dominate the
space used for medium and large corpora.

We generated a 177 MB on-disk file representing the information from 40 MB of text data from
the Wall Street Journal. Although the index requires a good amount of disk space, it increases the
capability of TELLTALE from 10 MB to 40 MB of text data with the same amount of processor
memory. The performance of similarity is also acceptable, though somewhat slow. However, we
had to reduce the size of the on-disk index if we were to be able to perform retrieval on gigabyte
corpora. The following section describes our compression techniques.

3.3 Compression

A large on-disk file not only takes up disk space, but also slows down the similarity calculation
because of the time it takes to read posting lists from disk. Since I/O is very slow compared to
CPU instructions, compressing the posting list results in two benefits: lower disk storage require-
ments, and faster similarity computations due to reductions in the time needed to read a bucket.

3.3.1 Strategy

The original on-disk file contained postings lists composed of a pair of numbers for each docu-
ment in which the n-gram occurred: an integer identifying the document containing the n-gram
and the normalized frequency for the n-gram in the document. This strategy required 8 bytes for
each posting, 4 bytes each for the document number and a floating point number for the fre-
quency.

First, we converted all of the n-gram frequencies into integers by storing the actual count of n-
grams in a document rather than the normalized frequency. Since we already store the number of
n-grams in a document, it is easy to regenerate the normalized frequency from the n-gram count

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 15 of 25

and the size of the document. This change allows us to use standard integer compression algo-
rithms on our postings lists.

Second, we noted that if we sorted the postings in a list by document number, we could store the
difference between an individual posting’s document number and that of the previous posting.
These gaps are smaller in magnitude than the document numbers themselves, and have the addi-
tional desirable property that they are smallest for large postings lists with many entries.

These two strategies can be used to greatly reduce the size of an on-disk index for n-gram based
information retrieval. Moreover, compression can be more effective for n-grams than for words
because the distribution of term frequencies is more skewed for n-grams than for words. For
example, Figure 6 shows the distribution of term frequencies for 5-grams in the combined 1 GB
corpus described in Table 1 alongside the distribution of integers describing the “gap” between
document numbers in postings.

The data in Figure 6 show that posting counts have the greatest potential for compression, though
there is also some opportunity for compression of document number gaps as well. The default

representation of integers in TELLTALE is 4 bytes, allowing values up to 232-1. However, the
count of a particular n-gram in a single document is usually very small; few n-grams have high
frequency within a document. In the corpus we studied, 97.77% of all postings had counts of five
or less, while over 77% had a count of exactly one. Based on this finding, we knew that the vast
majority of counts could be stored in far less than the standard four bytes of an integer.

We also looked at the distribution of document serial number gaps, also shown in Figure 6. This
graph shows that most serial number gaps are also relatively small. However, the curve falls off
far more slowly than that for posting counts. Half of the gaps were or less, and 92.6% were 255 or
less. This distribution means that over 92% of all gap values could each be stored in a single byte
rather than the four bytes required by the default representation.

Figure 6. Distribution of 5-gram frequencies and document number gaps. There are a total of

4.62×108 postings in this corpus, which contains close to 1 GB of text.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 16 of 25

Based on these findings, we implemented two different compression schemes in TELLTALE.
The first was simple to implement and provided reasonable compression for both n-gram counts
and document serial number gaps. However, it was considerably below optimal; the gzip utility
was able to compress the indices by a factor of two. We then switched to gamma compression,
yielding files that were approximately the same size as the result of using gzip on the original
files that used the first compression scheme.

3.3.2 Simple compression algorithm

Based on the statistics discussed in Section 3.3.1, we first considered a simple compression algo-
rithm that saves space for small numbers. We used a single byte to represent numbers from 0 to

27-1, two bytes for numbers 27 to 214-1, and four bytes for numbers in the range 214 to 230-1.
These numbers were stored in the format shown in Figure 7.

We got good compression results from this scheme. We generated an on-disk file containing all of
the documents in the ZIFF1, ZIFF2, AP1, and AP2 corpora using this compression. The com-
bined corpus has 960 MB of raw text, including 294,440 documents and 889,125 unique n-grams,
resulting in an on-disk file requiring 1.085 GB of storage. This provided better than a factor of
four compression relative to the uncompressed on-disk file. Additionally, query response time
improved greatly. After the system loads the in-memory tables for the large corpus, it can com-
pute, sort, and display the similarity between the query and every document in the corpus at the
rate of 5.5 minutes per 1000 characters in the query.

This simple compression algorithm showed that we can process n-gram queries against 1 GB of
text data quite well. However, we did not achieve as much compression as we could. We noticed
that gzip was able to compress our on-disk files by a factor of two, suggesting that we could
devise a compression scheme that approached, or even surpassed, this level of compression.
Doing so would reduce the size of on-disk indices and improve performance by reducing the
amount of data that must be read for each query. Balanced against this reduction is the increased
CPU time necessary to encode and decode a more complex compression scheme.

3.3.3 Gamma compression

Our initial experiments showed that compression was very effective at reducing resource require-
ments, but that we could achieve additional gains with more efficient compression schemes. We
considered several standard schemes for our corpus, including unary code, gamma compression,
and delta compression. All of these compression methods are relatively straightforward to imple-
ment and could provide significant improvement over our initial scheme.

Figure 7. Number formats for the simple compression scheme.

10

11

0 1 byte (8 bits) represents 0 – 127

2 bytes (16 bits) represent 128 – 16383

4 bytes (32 bits) represent
16384 – 1 billion

XXXXXXX

XXXXXX XXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX XXXXXXXX

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 17 of 25

We first considered unary code [4]. In this code, an integer is coded as one bits fol-
lowed by a zero bit. For example, the unary code for 4 is 1110. This represents small integers such
as n-gram counts within a document well, but is very inefficient at representing larger integers
such as document serial number gaps.

We next examined gamma compression, which represents an integer x as two parts: a unary code
for an integer m followed by a k-bit binary value y. The value for k is determined by taking the
mth element of a vector K of integers that is constant across all compressed values (i.e., constant
for a particular compression scheme). For a vector of integers K = <k0, k1, ..., kn>, the value of a

representation my can be calculated as . Table 2 shows examples of representa-

tions using two different K vectors. Note that the largest number representable in each scheme is
limited by the largest integer in the K vector. For this reason, gamma compression implementa-
tions often contain a large terminal value to handle the occasional integers larger than the range in
which most values fall.

For compression, the algorithm first subtracts 1 from the value being encoded. It then searches
through the table and finds the smallest “Maximum value” entry greater than the number being
compressed. That Maximum value entry corresponds to component ki of K, which indicates how
many bits are needed for the binary portion. The unary prefix m is read directly from the table,
and the binary portion y is obtained by subtracting the previous Maximum value entry (corre-
sponding to component ki-1 of K) from the value to be compressed. For example, compressing the
value 18 using the scheme K=<1,3,5,7,15> (on the right side of Table 2) would be done by first sub-
tracting 1, yielding the value 17. Looking in the table, this requires a unary prefix of 2 (110), since
42 is the smallest Maximum value greater than 17. Since the previous Maximum value entry is
10, the binary portion is 17-10 = 7 expressed in 5 bits (00111). Thus, the final representation is
11000111.

The decoding process is also relatively simple. The unary prefix m is extracted and used as the
index i into the table. The previous Maximum value, corresponding to ki-1, is then added to the k-
bit binary portion y that follows the unary prefix using the k found in the table, and 1 is added to

Prefix
K=<0,1,2,3,20> K=<1,3,5,7,15>

k Maximum value k Maximum value

0 (0) 0 20 = 1 1 21 = 2

1 (10) 1 1 + 21 = 3 3 2 + 23 = 10

2 (110) 2 3 + 22 = 7 5 10 + 25 = 42

3 (1110) 3 7 + 23 = 15 7 42 + 27 = 160

4 (11110) 20 15 + 220 15 160 + 215

Table 2. Sample gamma compression representations.

x 1≥ x 1–

2
ki

i 0=

m 1–

∑

y 1+ +

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 18 of 25

the result. For example, decoding the compressed value 10110 using the scheme on the right side
of Table 2 is done by looking up 2 (10) in the table, finding k=3 and the previous Maximum value
is 2. The uncompressed number is thus 2 + 6 (110) + 1 = 9.

The delta code is a derivative of the gamma code that uses the gamma code, rather than unary, to
encode the prefix. However, the delta code is more complex, and not as efficient for very small
numbers such as those found in n-gram frequency counts. There are other, more advanced com-
pression techniques, but these two are the most commonly used algorithms. Since integers in this
system are usually not big and gamma coding is easy to implement, we picked gamma coding to
compress the posting list.

After selecting gamma compression, we had to choose the best vector to use to compress our inte-
gers. To do this, we ran several experiments against the data shown in Figure 6 to compute the
amount of space that would be required using several different vectors. The results of some of our
experiments are shown in Table 3. As this table shows, optimal compression for n-gram counts
and document gaps were achieved with different vectors. To simplify implementation, we chose
the first vector in Table 3 as our compression scheme, although future versions of TELLTALE
may use different vectors to compress different value sets. Even with our choice of a single vec-
tor, however, we were within 5.5% of the space required by the optimal two-vector compression
scheme. Moreover, the optimal scheme for a given corpus can only be discovered by experimen-
tation such as that we performed on our 1 GB corpus. Since the optimal choice for any particular
corpus may be different, we chose a simple scheme that performed well.

Using our gamma compression scheme with the vector in the first line of Table 3, we generated
an on-disk index file covering ZIFF1, ZIFF2, AP1, and AP2. The raw text from these files was
960 MB, but the on-disk index consumed only 647 MB. While the table entry suggests that under
500 MB would be necessary, the table does not include additional data structures necessary to
store document info and the n-gram headers; these structures make up the additional 150 MB.

Vector N-gram counts (MB) Document gap (MB) Total (MB)

<0,1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,28> 87.7 409.1 496.8

<0,1,2,3,4,6,8,10,12,14,16,18,28> 87.7 409.2 496.9

<0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 83.2 435.0 518.2

<0,0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 82.3 460.2 542.5

<0,0,0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 82.1 484.7 566.8

<0,0,2,4,6,8,10,12,14,16,18,28> 86.4 412.0 498.4

<0,2,4,6,8,10,12,14,16,18,28> 96.6 388.1 484.7

<0,3,6,9,12,15,18,21,28> 106.9 395.2 502.1

<0,2,3,6,9,12,15,18,21,28> 96.0 398.5 494.5

<0,1,2,4,6,9,12,15,18,21,28> 88.2 408.2 496.4

Table 3. Index sizes for various gamma compression vectors.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 19 of 25

Since they are only read in at startup, however, we decided not to attempt to compress them. Our
experiment gave a compression ration of 0.67, which is nearly as good as gzip.

Gamma compression also improves query performance by reducing the amount of data that must
be read for a single query. After loading the in-memory information for the 960 MB of text,
TELLTALE can compute and sort about 300,000 documents’ similarity result at the rate of 50
seconds per thousand characters in the query. This is considerably faster than our original com-
pression scheme, as can be seen in Figure 8.

3.4 Handling gamma compressed postings lists in memory

The dropping price of memory has made it possible to purchase large amounts of memory at a
reasonable price. With the help of gamma compression, the compressed postings list is small
enough to be loaded into main memory if allocation is handled intelligently. Since about 1 GB of
raw text data can be indexed in under 700 MB, we can handle 1 GB of text data in less than
750 MB of main memory, allowing for a small amount of overhead. Doing so will improve the
performance a great deal by eliminating disk I/O during a query.

The major difficulty with handling the compressed postings lists in memory is coping with the
many bucket capacities necessary — some postings lists will be only a few bytes long, while oth-
ers may require many kilobytes. Additionally, these buckets must grow dynamically as new docu-
ments are indexed. These requirements are best met using lists built from fixed size “chunks” of
space connected in a linked list. The overhead for this scheme is relatively small — fixed size
chunks that can hold 32 bytes require only four bytes of pointer overhead for an overhead of
12.5%. In addition, fixed size chunks waste some space because part of the last chunk is unused.
On average, this will waste half of a chunk per n-gram, 16 bytes in our system. Thus, total over-
head for a system that scanned in the 1 GB AP-ZIFF corpus would be 14 MB for unused chunk
space and about 62.5 MB for pointers. In future versions of TELLTALE, we will attempt to
reduce this overhead by allowing two or three different chunk sizes for maximum efficiency.

Operation using in-memory compressed postings lists is similar to that using uncompressed post-
ings lists, but with the additional step that postings lists must be compressed before they are per-
manently stored. Also, postings lists must be uncompressed before they are used in similarity

Figure 8. Retrieval time for different query sizes and compression methods.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 20 of 25

calculations. While this technique uses less memory than uncompressed postings lists, it is some-
what slower because of the time needed to uncompress a postings list. A 200 MHz Pentium is
capable of decompressing two million integers a second, and while this seems an impressive num-
ber, similarity calculations may need to process ten million postings or more. Thus, decompres-
sion time contributes significantly to similarity calculation time.

By using in-memory gamma compression rather than uncompressed postings lists, TELLTALE
can reduce its memory usage by a factor of four or more, as Figure 9 shows. Both versions of
TELLTALE keep the entire postings list as well as the other data structures, including the docu-
ment hash table and n-gram hash table, in memory. The only difference between the two is that
the gamma compressed version uses a great deal less memory for larger amounts of text. Note,
however, that the original TELLTALE uses slightly less memory for small corpora; this occurs
because the overhead for the gamma compression version of TELLTALE is slightly higher. How-
ever, this higher overhead is more than recovered as the amount of indexed text increases.

The in-memory gamma compressed version also provides increased speed compared to the on-
disk version. Comparisons with the original, uncompressed in-memory version are less relevant
because the original version can only handle very small corpora. Thus, we focused our attention
on the relative performance of the gamma compressed postings lists on disk and in memory. We
ran queries against the 257 MB ZIFF1 corpus, which contains 75,029 documents, 562,492 unique
n-grams, and a total of 185,159,683 postings. We were limited to a corpus of this size because the
machine on which the queries were run, a two processor SGI Origin 200, had only 256 MB of
physical memory, and the use of virtual memory would have resulted in unacceptably slow per-
formance due to excessive paging. When the entire ZIFF1 corpus was loaded into memory, it
used 210 MB of memory, leaving the rest for operating system use. As shown in Figure 10, in-
memory gamma compression is twice as fast as on-disk gamma compression, though the differ-
ence is not as large as we had expected. This may be due to the high performance XFS file system
[18] used on the SGI server on which the experiments were run.

As the preceding experiments have shown, gamma compression performs well for n-gram-based
IR. However, we had to adjust the gamma compression vectors to best compress the postings lists
generated for n-grams because document gaps and, particularly, occurrence count distributions

Figure 9. Memory usage for original and in-memory gamma compressed TELLTALE.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 21 of 25

are different between words and n-grams. Using these techniques, we expanded TELLTALE’s
capability from around 10 MB to over 1 GB while maintaining good query performance.

4 Exploring different similarity mechanisms

Because this is the first n-gram-based information retrieval system capable of handling a gigabyte
of text, we were able to perform several experiments on using different document similarity
schemes that were previously done only on relatively small corpora [19]. While our experiments
were not extensive, they showed the effects of eliminating common n-grams from queries and the
resulting performance gains. We also conducted some basic experiments on the effectiveness of
tf.idf similarity using n-grams rather than words.

4.1 Incremental similarity calculations

We mentioned earlier that word-based IR systems remove stopwords because they don’t help
with retrieval and take up index space. Incremental similarity is based on the related idea that an
n-gram which occurs in most documents is not important for retrieval. If an n-gram occurs in a
large percentage of documents, it must be a common term and not helpful in distinguishing one
document from another. At the same time, such n-grams have long postings lists, requiring TELL-
TALE to spend a relatively long time reading and uncompressing their postings lists. Can we
ignore common n-grams without reducing retrieval performance? To test the effectiveness of
ignoring common n-grams, we modified TELLTALE to include a threshold t () such that

TELLTALE ignores n-grams that occur in more than documents, where numDocs
is the total number of documents in the corpus. Such n-grams may, but do not necessarily, corre-
spond to stopwords. We therefore allow the TELLTALE user to adjust the threshold as they wish,
trading off the risk of discarding meaningful n-grams and the expense of longer similarity compu-
tation time. The speedup from reducing the threshold is illustrated in Figure 11. As expected,
lower thresholds require less computation time, but the improvement is not dramatic. Even for a
threshold of 50%, the maximum improvement time is from 33 seconds to 28 seconds, or 85% of
the original time. Because there are many more unique n-grams than words, there are fewer n-

Figure 10. Performance comparison of in-memory and on-disk version with gamma compression.

0 t 1≤ ≤
t numDocs×

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 22 of 25

grams that occur in most of the documents. Thus, omitting the most common ones does not result
in a large reduction in memory usage or improvement in retrieval speed.

We next produced a simple precision-recall graph for reduced n-gram frequency thresholds. Since
we did not have relevance judgments for queries on our corpus, however, we used approximate
judgments based on the results from queries using a non-reduced corpus. Nonetheless, the graph
in Figure 12 shows that, as expected, lower thresholds result in lower precision and recall. Given
the relatively small improvement in retrieval speed, we believe that eliminating common terms
from similarity computations may not be as effective for n-grams as it is for words.

4.2 TF/IDF similarity

Another standard weighting system used in word-based systems is tf.idf (Term Frequency/Inverse
Document Frequency) [19]. It uses the term frequency within a document times the log of the
total number of documents over the number of documents containing the term. TELLTALE
includes support for tf.idf weighting. Our experiments showed that tf.idf similarity can be calcu-
lated at about the same speed as the original TELLTALE similarity. Thus, if future work shows

Figure 11. Performance for incremental similarity with different thresholds.

Figure 12. Recall-precision curve for different thresholds.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 23 of 25

that tf.idf yields more accurate similarity measures when using n-grams, as suggested by [19],
TELLTALE will be able to support it with little loss in performance

5 Conclusions and future work

We greatly expanded TELLTALE’s capacity and improved its performance, without compromis-
ing its ability to handle multilingual or garbled documents. It is these advantages, combined with
an ability to perform retrieval using full documents rather than relatively short queries, that make
TELLTALE a useful tool. However, there is still more work to be done. We hope to perform a
more complete study of the tradeoffs between different similarity measures using n-grams rather
than words. Because TELLTALE is the first system using n-grams that can handle a gigabyte of
text, we hope to be able to show that n-grams are comparable to words as indexing terms in terms
of retrieval effectiveness on large corpora. We are also performing experiments in using TELL-
TALE to index collections in non-English languages ranging from European languages such as
French and Spanish to ideogram-based languages such as Chinese. Our preliminary results are
promising, but more investigation needs to be done.

We used n=5 throughout this study. The larger the value of n, the larger the index required to
store the corresponding (larger) number of unique n-grams. Longer n-grams tend to have more
self-evident meaning, so ultimately the choice of n should be based on a trade-off between index
size and meaning per n-gram. There are applications where smaller values of n are acceptable,
and it remains to be shown how retrieval performance on a large corpus is affected as n increases.

We have demonstrated that it is possible to build an information retrieval engine using n-grams
rather than words as terms that can handle gigabyte-sized corpora. The TELLTALE IR engine
adapts techniques that have been used for word-based systems to n-gram-based information
retrieval, making adjustments as necessary to account for the different term distributions exhib-
ited by n-grams. Because there are many more unique n-grams than words in a document, TELL-
TALE must cope with many more unique terms and at least an order of magnitude more postings
to allow indexing of a text corpus. By modifying standard techniques, we demonstrated a system
that provides good performance on the large corpora that computers will be called upon to index.
These techniques can also be used on other systems where performance and scalability are critical
to better use of system resources and larger scale and faster processing.

Acknowledgments

The authors are grateful to the many people who contributed to this work by giving us feedback
and suggestions. These include Claudia Pearce and Bill Rye at the Department of Defense and
David Ebert at UMBC.

This work was supported in part by the U.S. Department of Defense.

References

[1] Steve Lawrence and C. Lee Giles, “Searching the World Wide Web,” Science 280(3), 3
April 1998, pages 98 - 100.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 24 of 25

[2] Claudia Pearce and Ethan Miller, “The TELLTALE Dynamic Hypertext Environment:
Approaches to Scalability,” in Advances in Intelligent Hypertext, J. Mayfield and C.
Nicholas, eds. Lecture Notes in Computer Science 1326, Springer-Verlag, October 1997,
pages 109 - 130.

[3] Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval, ACM
Press, 1999.

[4] Ian H. Witten, Alistair Moffat, and Timothy C. Bell, Managing Gigabytes, second edition,
Morgan Kaufmann, 1999.

[5] James P. Callan, W. Bruce Croft, and John Broglio, “TREC and Tipster experiments with
INQERY,” Information Processing and Management 31(3), 1995, pages 327 - 343.

[6] D. Heckerman, “A tutorial on learning with Bayesian networks,” Technical Report MSR-
TR-95-06, Microsoft Research, March 1995 (revised November, 1996).

[7] G. Salton and M.J. McGill, “The SMART and SIRE Experimental Retrieval Systems,” in
Readings in Information Retrieval, Karen Sparck Jones and Peter Willett, eds., Morgan
Kaufmann, 1997, pages 381 - 399.

[8] Claudia Pearce and Charles Nicholas, “TELLTALE: Experiments in a Dynamic Hypertext
Environment for Degraded and Multilingual Data,” Journal of the American Society for
Information Science, April 1996, pages 263 - 275.

[9] Marc Damashek, “Gauging Similarity with n-grams: Language-Independent Categoriza-
tion of Text,” Science 267, 10 February 1995, pages 843 - 848.

[10] C. E. Shannon, “Prediction and entropy of printed English,” Bell System Technical Jour-
nal 30, pages 50 - 64.

[11] F. Cuna Ekmekcioglu, Michael F. Lynch, and Peter Willett, “Stemming and N-gram
Matching For Term Conflation In Turkish Texts,” available at
http:// www.shef.ac.uk/uni/academic/I-M/is/lecturer/paper13.html#lovi68.

[12] The Unicode Consortium, The Unicode Standard: World Wide Character Encoding, Add-
ison-Wesley, Redwood City, CA, 1992.

[13] Brent B. Welch, Practical Programming in Tcl and Tk, 2nd edition, Prentice Hall, 1997.

[14] Donna Harman, “The DARPA TIPSTER project,” ACM SIGIR Forum 26(2), Fall 1992,
pages 26 - 28.

[15] The Text Retrieval Conference. Information available at http://trec.nist.gov.

[16] R. L. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, Network Working
Group, April 1992.

[17] Secure Hash Standard, FIPS-180-1, National Institute of Standards and Technologies,
U.S. Department of Commerce, April 1995.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

Page 25 of 25

[18] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff
Peck, “Scalability in the XFS File System,” Proceedings of the Winter 1996 USENIX
Conference, San Diego, CA, pages 1 - 14.

[19] James Mayfield and Paul McNamee. “N-gram vs. Words as Indexing Terms,” available at
URL http://www.csee.umbc.edu/~mayfield/pubs/APL-TREC97prelim.ps.

