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Abstract

Tabular representations of information can be organized so that the sub-
ject distance between adjacent columns is low, bringing related materials
together. In cases where data is available on all topics, the subject distance
between table columns and rows can be formally shown to be minimized. A
variety of Gray codes may be used for ordering tabular rows and columns.
Subject features in the Gray code may be ordered so that the coding system
used is one that has a lower inter-column subject distance than with many
other codes. Methods by which user preferences may be incorporated are
described. The system optionally may display unrequested columns of data
that are related to requested data.
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1 Introduction

Given a query and a database containing structured data, how should the retrieved
data be organized into rows and columns in a tabular display? Common sense
suggests that when there are large numbers of columns in a table, those columns
on similar topics should be grouped together. What might be the formal rationale
for this arrangement? Below we present criteria and methods through which these
questions may be addressed.

We develop an explicit process by which features in table columns may be ar-
ranged or weighted so as to increase the similarity between adjacent table columns.
This arrangement can be made adaptive, incorporating user expressions of pref-
erences. This model can be seen as consistent with some user heuristics, such as
ordering tables alphabetically, from largest to smallest values, etc. We will also
suggest that database and retrieval systems may retrieve and display columns of
data that were not requested, when there is a close topical proximity to data that
were requested.

The nature of these features has a large impact on the quality of the organiza-
tion of the items. The best features may be chosen from the set of existing features
so that there is very little subject overlap between the chosen features, as in the
case offacetsused in indexing systems (Foskett, 1996). The features instead may
be artificial codes, such as one finds with methods that produce artificial, statisti-
cally independent features (Borko, 1985; Deerwester, Dumais, Furnas, Landauer,
& Harshman, 1990).

The spatial organization of information is improved by placing those informa-
tional entities with similar features near each other. The most common example
of such an organizing principle is found in libraries, where books with similar
features are placed near each other on the library’s shelves. We refer to the enu-
meration system used to assign numbers (such as those placed on the spine of a
book) and then to arrange these books as aclassification system. Popular classi-
fication systems include the Dewey Decimal System and the Library of Congress
Classification System. Similar arrangements of columns based on column features
may produce more browsable tables.

One often finds the rows of a table are placed in an order based on non-topical
considerations. For example, a table of populations of nations in 2000 might list
nations (rows) in alphabetical order rather than in an order based on the similarity
of the countries to each other. Similarly, a table of populations of France for each
year from 1950 to the present might list the years (rows) in calendar or reverse-
calendar order. We will discuss an economic argument for why rows of a table
might best be placed in what first appears to be a non-topical order.

Ordering of data along one dimension of a table may be optimized given cer-
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tain assumptions. While published tables are most frequently presented as2 di-
mensional, we are treating the columns and rows as separate1 dimensional vec-
tors. Some of what we are considering here can be modeled in2 dimensions, but
treating the dimensions separately provides a clearer and simpler exposition of
the basic issue of providing an organizing principle for tables that brings related
material together.

This model of column organization will allow for efficient browsing of ma-
terial. In fact, many tables are designed explicitly for browsing; others may be
optimized for searching. Other methods may be more effective for data presenta-
tion if the user wishes to retrieve a single data element, such as might be retrieved
by a DBMS given a query designed to retrieve a single record.

Users retrieve information consistent with one of two paradigms. The first,
searching an information retrieval system, uses a query to represent the user’s
information needs. The user enters a query into a system and then the system
responds, presenting relevant information to the user. The browsing paradigm, on
the other hand, assumes the data is organized to support browsing, usually based
on a notion of topical similarity. The user selects a starting point within the infor-
mational space and then moves (or jumps) to neighboring or distant information,
based upon what was already found.

Users may retrieve information from a table of data by browsing through it,
in a manner similar to how they browse library collections (Boyce, Douglass,
Rabalais, Shiflett, & Wallace, 1990; Losee, 1993b, 2002; Morse, 1970; Rice,
McCreadie, & Chang, 2001). Reflecting similar concerns, we may arrange the
columns or rows on a displayed table so that each row or column is similar to
the row or column adjacent to it. This will increase user searching and browsing
efficiency. We address the issue of placing similar columns near each other, as
well as columns whose separations are most costly. This arrangement has similar-
ities to those proposed on qualitative grounds by Ranganathan for use in indexing
systems, including chain indexing (Foskett, 1996).

We optimize data organization in a table given constraints and assumptions
of the model. The development of a formal model for the placement of columns
and rows in a table and the analysis of the assumptions are essential to a science
of table development. While most user-centered research involves studying users
directly, many aspects of user-centered questions concerningoptimizationbest
may be addressed formally, while others best may be addressed through empirical
studies (Schoemaker, 1991). While it is clear that mathematical models may be
elegant but ignore certain complexities (Kahneman, Slovic, & Tversky, 1982), all
inferential work runs the risk of being inaccurate because all cases aren’t consid-
ered and the inference is based on incomplete information.
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2 Tables and the Display of Data

Tables display data in an organized manner (Borowick, 1996; Schriver, 1997), pre-
senting information in rows and columns that allows for the easy understanding
of the information. Compared to graphs, the other primary form of data presenta-
tion, tabular data is usually presented in a form that is more accurate than graphical
displays but tabular data is usually weaker at showing relationships (Smith, Best,
Stubbs, Archibald, & Roberson-Nay, 2002). In some cases, additional informa-
tion, such as metadata, may be available to users of tabular data to assist in the
understanding of the source or features of the data (Marchionini, Hert, Shneider-
man, & Liddy, 2001).

Printed or displayed tables need to restrict the amount of information present.
Borowick notes that “when tables have more than five columns and five rows....
[the author should] separate the data or facts into subsets to encourage reader at-
tention” (Borowick, 1996, p. 113). Tables must be organized so as to be relatively
easy to understand. Our goal below is to provide an organizing principle that will
allow us to automatically group columns to increase the degree to which we might
“encourage reader attention.”

The organization of tabular data is often consistent with a particular organizing
principle. The simplest principle is randomness, with data beng displayed in any
order. In this case, users searching for information might best use a linear or
random search technique. A great deal of the organization used for tabular data
is consistent with human notions of what is a suitable taxonomy. While such a
taxonomy may be appealing, some users will find this taxonomy more natural
than others do. Each taxonomy represents a particular cultural viewpoint; using a
particular arbitrary taxonomy makes browsing more difficult for those who have
viewpoints inconsistent with these knowledge structures. The techniques below
will provide a set of objective criteria for organizing data in tables, given whatever
features the user or system chooses, as well as a set of adaptive techniques so that
a table may be tailored for a particular user or group of users.

3 The Gray Code

The binary Gray code provides an ordering for each possible item’s representa-
tion such that there is only 1 character difference between the representation for
an item and the representation for the next item (Hamming, 1986). TheHamming
distancebetween two individual binary representations for items is the number of
features by which they differ (Losee, 1990). For example, the Hamming distance
between10101 and11111 is 2 because the two representations differ in 2 posi-
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Decimal Binary Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 1: Decimal, traditional binary, and Gray code numbers.

tions, the second and the fourth. The Hamming distance is always1 between the
Gray code representations of two numbers when one number is the successor or
predecessor of the other.

The path defined by the Gray code through the topical space may be viewed
geometrically as moving over the surface of a unit cube inn-space connecting
each vertex where each connection in the path is of length1, i.e., on an edge of
the cube. A unit cube is a cube where the allowable locations on each axis allow
for the two values,0 and1. Every binary number ofn bits serves to represent a
vertex on thisn-cube, and conversely, each vertex on then dimensional unit cube
represents one of then-bit binary numbers.

The most commonly considered form of the Gray code is thereflected Gray
code(Conway, Sloane, & Wilks, 1989; Flores, 1956; Gilbert, 1958). Consider
Table 1 which shows the numbers from0 to 7 in decimal, traditional binary, and
reflected Gray codes. The reflected Gray code is developed according to a pattern
that is best seen visually. Note that if one drew a line across Table 1 between
the decimal 3 and decimal 4, one would see that the right two bits (columns) for
the Gray code seem to be reflected around the line between 3 and 4. The top
half of the Gray code numbers (decimal 0 to 3) have a0 as the leftmost bit and
the bottom half (decimal 4 to 7) having a1 as the leftmost bit (Flores, 1956). A
reflection can similarly be seen if one drew a line between decimal 1 and decimal
2, with decimal 1 being similar (on the rightmost bit) to decimal 2 and the decimal
0 being similar (on the rightmost bit) to the decimal 3.

A Gray code is transformationally equivalent to another code if one code can
be changed to another by shuffling the bit positions. Taking an example from
the decimal number system, one might arbitrarily swap the ten’s and the one’s
columns and still count and do math, although it would certainly be awkward at
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first and would require that arithmetic algorithms be modified. One may modify
the reflected Gray code by moving positions around and still retain many of the
features of the original reflected Gray code.

One can similarly make a Gray code that is non-reflective (Losee, 2002), al-
though non-reflected codes are far less tractable. The non-reflected code can be
produced by noting that at some positions in the reflection, one can remove a
group of consecutive numbers so that the edges of the remaining “hole” have
a Hamming distance from each other of 1 (and thus a Gray code exists locally
“over” where the section was removed, and there is a place where the removed set
of numbers can be inserted so that the requirements of a Hamming distance of 1
between adjacent code words is met.

The differences in orderings provided by the Gray code and “true binary” may
be seen by considering a square, where the Gray code values moving around the
four corners of the square would be(0, 0), (0, 1), (1, 1), and(1, 0). Note that each
corner differs from its adjacent corners by only one position or bit. If one were to
provide an ordering consistent with true binary ordering, one would obtain (with
decimal values in square brackets, e.g. [ and ]):(0, 0)[0], (0, 1)[1], (1, 0)[2], (1, 1)[3].
Clearly, the difference between the decimal1 and the decimal2 as represented by
true binary is2, as is the difference between the end value and the first value (3 and
0) when one wraps around from the end to the beginning. Differences of2 never
occur in the Gray code, where the distance is always1; the Gray code brings items
closer together than does true binary. Packing items together and the relationships
with information theory of such packings is an interesting problem (Thompson,
1983).

While each digit in a Dewey Decimal Number and each bit in either a true
binary number or a Gray code binary number can be used to represent a position
in a hierarchy, and all these codes are consistent with a hierarchical indexing or
feature system, the Gray code places items closer to neighbors with which they
have similarities (assuming each “corner” is actually instantiated as a feature com-
bination in a table or a document.) Using the Gray code produces smaller gaps
at transition points than does true binary, where the number after0111 is 1000, a
number that has literally nothing in common with its predecessor. When viewed
in an indexing context, Ranganathan referred to these gaps asjerksand realized
that they should be minimized (Foskett, 1996). The Gray code uniquely meets
this requirement.

When tables are synthesized from retrieved data, such as the result of SQL
queries, the columns may be arranged so that they are in Gray code order, provid-
ing a degree of similarity between adjacent columns. Each table column contains
a subset of the features from the universe of features for the dataset being used.
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These features represent what the column is about, and when the features are
brought together within each column to represent the column, the columns may
be arranged by using the Gray code ordering for columns based on the list of
presence and absence of features (feature vectors). The features may be natural
language terms or arbitrary symbol strings representing concepts. Metadata may
be seen as an example of the latter (Greenberg, 2002). Clearly, placing similar
columns near each other organizes columns in a cognitively smoother form than
would be experienced with a random ordering of columns.

4 Searching and Browsing in a Topical Space

The process of searching or browsing through a set of entities, such as table
columns, may be viewed as consistent with a geometric model in which a path
leads through a concept space and where each entity or column represents a point
in the space.

A topical space provides a location for every possible combination of the top-
ics which it represents (Newby, 2001). Different spaces will allow for different
sets of combinations; essentially, a particular space is consistent with one set of
possible combinations of the topics. Most humans accept that kittens are biolog-
ically male or female, while few native speakers of English would attribute such
inherent gender features to a teapot, television, or a rug. Different combinations of
variables are allowed in different spaces; some cultures view spirits as having gen-
der, while others do not. Each topical space is consistent with a particular world
view, and a user’s conceptual world can be represented by a particular space. For
our purposes, we assume that concepts n the topical space are independent, or that
concepts can be developed which are statistically independent e.g., through Latent
Semantic Indexing (Deerwester et al., 1990), and all (or a very large number of)
concepts are included in our feature space.

A path exists between two points in a space when there is a set of points link-
ing (or more formally a continuous function exists between) the two points. A
path may be a straight line, or it may curve or be zigzagged. The nature of paths
in a space determines how distances may be measured. If one looked at an aerial
view of a large city, for example, the distance between two intersections may be
measured “as the crow flies,” that is, as though there were no intervening ob-
jects between the intersection. This is the Euclidean distance between two points.
When one measures the distance that a taxi would travel between the two inter-
sections, however, one is limited to traveling by street. Measuring distance this
way uses the “taxi-cab” or “city block” metric.

A Hamiltonian path is a path through the space that passes through each point
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exactly once. A Hamiltonian circuit is a Hamiltonian path that begins and ends
at the same point. The Gray code that will be used in our work provides such a
Hamiltonian, and the table columns can be understood as being consistent with a
Hamiltonian circuit.

In a topical space,featuresare variables representing a topic, feature, or metatag
(Greenberg, 2002). Given one variable per topic, we may speak of ann-space as
consisting of all the possible topic combinations in a particular world or world
view. A simple way of determining the feature vector associated with a table
column might be to include the feature associated with each term, assuming a
one-to-one relationship between terms and feature variables. Features may also
be assigned values based on human subject analysis (Foskett, 1996) or through
the statistical extraction of features (Deerwester et al., 1990). Features which are
relatively independent are widely referred to asfacetsin the indexing literature.
The author believes that using relatively independent features is very important to
the success of feature-based automatic organizing systems.

The classification systems suggested below provides a path through the topi-
cal space that is consistent with a Gray code. Note that the Gray codedoes not
address indexing or how the feature vectors are derived: the Gray code as used
here provides an ordering or enumerating process that can be used to prescribe
an arrangement for these feature vectors. When we use such a code to describe a
path through a dataset, it is unnecessary to compute distances between all of the
columns. If distance measures are constantly used when trying to organize table
columns, one must computen(n− 1)/2 distances to compute a similarity matrix
when there aren possible nodes or table columns. If there arem binary fea-
tures and there are nodes representing all the possible feature combinations, then
there are2m nodes, and the number of distance measures that must be computed
becomes2m(2m − 1)/2 = (4m − 2m)/2.

The process ofsearchingthrough the concept space may be described asfol-
lowing a path through the topical space. One can define information retrieval as
the determination of a path through the space as well as a starting point, often the
first item to be examined. Interestingly, the output from an information retrieval
system is provided in an order designed to place documents in roughly decreas-
ing order of probability of relevance. This probabilistic order provides a path
through space: the reader might note that as one progresses through this article,
considerations are incorporated into the Gray code model that are consistent with
the concerns of decision-theoretic and economic models, providing a Gray code
based model that is optimal in terms of placing similar document near each other
while at the same time probabilistically or economically weighting features and
possibly adapting weights as searching progresses.
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Browsing similarly begins at a point and then moves through a path. It may be
very directed toward answering a specific question, or it may be more exploratory,
where the act of browsing helps one to develop the sense of information need
(Marchionini, 1995). Browsing usually takes place on a path that is determined
for a group. Libraries, for example, order documents on shelves by using a single
classification system, such as the Dewey Decimal system, that is designed for all
users of the library. If we have an adaptive classification system (Losee, 1997)
that can be automatically customized for each user, the path may be developed in
such a way that the individual has to travel the shortest distance possible to find
those topics of interest. This differs from non-adaptive systems to which the user
must adapt. Bates (1986), for example, describes how users adapt to the ordering
in reference texts by quickly inferring the organizing principle and then searching
based on the properties of the inferred arrangement. The proposed adaptive Gray
code system brings together related material in a manner that non-adaptive models
fail to do.

When counting using a code such as the traditional binary counting system as
well as the binary Gray code, the rightmost bits change or cycle more frequently
than do the bits to the left. For a Gray code based classification, arranging fea-
tures so that the most probable bits (features) are on the left and the least probable
bits are on the right results in the lowest expected dissimilarity between adjacent
entities than would be the case if the bit order were reversed. This arrangement of
features is similar to the feature ordering inchain indexingas proposed by Ran-
ganathan (Foskett, 1996). This form of indexing, used by some search engines,
including Yahoo!, orders features from the most general (the highest probability)
to the most specific (the lowest probability). For example, one such hierarchy
used by Yahoo! is:

Computers and Internet> Internet> World Wide Web> Searching
the Web> Indices to Web Documents> Dewey Decimal Classifica-
tion.

This feature ordering will be considered more extensively below.
We should note that there is a growing literature studyingcarousel systems

(Litvak & Adan, 2001) that will likely contribute to the browsing literature in the
near future. Assume that inventory is stored on a large wheel or carousel, and that
someone filling orders spins the carousel (or moves around it), selecting items
to fill the order. What will be the person’s expected travel time (or the wheel’s
spin time)? This is very similar to browsing through randomly organized collec-
tions, determining the expected browsing distance. We believe that this carousel
literature may be found to provide tools useful for describing organization and its
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Table 2: Data concerning column headers and features of a five column table.
HereY representyesor the feature being present andN representsno or the fea-
ture’s absence. This order of column headers (the rows in this table) is what is
obtained with standard decimal or “true” binary order.

Column
Name NameQ OfficeQ AddressQ

Home Phone Number N N N
Home Address N N Y
Office Phone Number N Y N
Office Address N Y Y
Person’s Name Y N N

relationship to browsing time. In return, studies of browsing, and more specif-
ically those studies addressing the optimal organization of information using a
Gray code, provide a solution to questions about how to organize products placed
on such a carousel.

5 A Sample Ordering of Table Columns

As an example of the use of this technique, let us assume that we have five vari-
ables and column headers, shown in Table 2. We use three binary features to
capture the different aspects of our column names. Note that there are some com-
binations of features that don’t represent column headers, for example, there is
nothing that is both aNameQ, anOfficeQ, and anAddressQ.

If a table’s columns are arranged using traditional numbering systems (true bi-
nary or decimal), the column order would be as (the rows) in Table 2. If, however,
we wish to use the Gray code, with the features used for the Gray code in the order
in Table 2 e.g.,NameQ, OfficeQ, and thenAddressQ, we would find the column
order to be

• (0 0 0) = (N N N) [Home Phone Number],

• (0 0 1) = (N N Y) [Home Address],

• (0 1 1) = (N Y Y) [Office Address],
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• (0 1 0) = (N Y N) [Office Phone Number],

• (1 1 0) = (Y Y N) [],

• (1 1 1) = (Y Y Y) [],

• (1 0 1) = (Y N Y) [],

• (1 0 0) = (Y N N) [Name].

Here the first number in parentheses represents whether theNameQfeature is
present or not, the second number whether theOfficeQfeature is present or not,
and the third number whether theAddressQfeature is present or not. Note that the
Gray code ordering does not determine the indexing, which in this case is simply
whether a feature is present or absent, a feature that is objectively determined. The
Gray code, instead provides anorderingof the feature vectors, e.g., the ordering
of the eight lines above based on their numeric value. This ordering has the effect
of placing both addresses (office and home) together. If we considerwrap-around
among the first four lines, it is also clear that phone numbers are placed next to
each other.

If, on the other hand, we placed the third (rightmost) column in Table 2 be-
tween the first and the second, so that the feature order isNameQ, AddressQ, and
thenOfficeQ:

• (0 0 0) [Home Phone Number],

• (0 0 1) [Office Phone Number],

• (0 1 1) [Office Address],

• (0 1 0) [Home Address],

• (1 1 0) [],

• (1 1 1) [],

• (1 0 1) [],

• (1 0 0) [Name].

In this feature arrangement, columns with the featureOfficeQare brought together.
Notice that if there were not the third (leftmost) feature, columns with the two
HomeQfeatures would “wrap-around” and be adjacent, and if there were a fourth
or a fifth feature, each column with aHomeQfeature would be adjacent to another
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column with aHomeQfeature (assuming that all possible columns exist.) We
believe that if all columns don’t exist, this arrangement is still the best in most
cases.

Clearly, the nature of feature and column arrangement determines the level of
adjacency or subject distance between columns. In one instance in our example,
we were able to have columns addressing work or home next to each other, while
with a different ordering of features, the columns addressing phones or addresses
were placed adjacent to each other.

6 Table Browsing Performance

The performance of a user browsing a table may be measured or estimated as
the distance along the path in topical space. While there are other measures of
browsing task performance, such as clock time, eye movements, and so forth,
using the distance in concept space to measure browsing performance can serve as
a surrogate for the cognitive distance and complexity experienced by the user. The
length of the path the user travels in the topical space thus serves as a performance
indicator. The path can be adjusted to minimize the distance the user travels in
the topical space; this will allow us to provide tables with column organization
adapted to users or groups of users.

Measures may be descriptive, or we may try to predict their values. A descrip-
tive measure of the browsing distance may calculate the distance based upon the
sum of the observed distances between individual entities through which the user
browses. Psychologically, a Gray Code based path through the set of columns or
rows in a table may approximate what happens at the level of eye movement, as
the eye scans across a table, or it may approximate the cognitive process under-
lying such actions (Salvucci & Anderson, 1998). It is clear that the eye doesn’t
follow an exact linear path when it reads or scans, but the linear path is a reason-
able approximation of what happens over relatively large distances or within brief
scans of chunks of text.

Predictive measures estimate the distance, based upon the algorithm used to
produce the links between the entities and knowledge of the locations of the en-
tities. As a simple example of this distinction, we can measure how far an auto
travels in an hour using an odometer, or we can predict how far it will go by mul-
tiplying the one hour by the average rate of speed, yielding the expected distance
covered in an hour.

12



7 Information Theoretic Ordering of Column Fea-
tures

The ordering of table columns may be adapted to a particular set of circumstances,
and may be changed as the circumstances change. One ordering principle based
on probabilistic considerations is information theory. While the use of Shan-
non’s information theory (Shannon & Weaver, 1949) to model phenomena outside
of electronic communication may be stretching the basic model some (Ritchie,
1991), the information content of features or columns in tables may be approxi-
mated by this model. Related to this is the excellent work by Lee that addresses
information-theoretic models of databases and tables (Lee, 1987).

When using the Gray code as a classifying and ordering principle, being able
to measure the subject distance between entities in the code and thus columns in
tables allows one to evaluate different codes (Losee, 1992, 1993a). In predictive
situations, a probabilistic description of the distance will allow us to consider for-
mally when one system for organizing table columns will be superior to another.
To simplify our argument, we assume below that all features are binary (although
this applies equally well to non-binary features), and thus each table column or
row is or is notabout each one of the features in the feature set. We will allow for
the weighting of features, which provides added flexibility in feature ordering.

We begin examining the dissimilarity between columns by considering the
case where all features are considered to have the same weight or information.
Assume that distance or difference between two identical features is0 while the
difference between two different features is1. One can then compute the dis-
similarity between two columnsi andj for a single featurek as the sum of the
probabilities that the feature has different values given random column ordering.
The chance that there is a difference between two features is the chance that the
first is a1 multipled by the chance the second is a0, with the same occurring for
the inverse values. The value of the dissimilarity for featurek is thus

D(ci,k, cj,k) = pk(1− pk) + (1− pk)pk, (1)

wherepk is the probability a characteristic featureci,k will occur in a column
or data classi. Such probabilities may be estimated using a variety of methods,
ranging from methods of moments to Bayesian methods to more elaborate meth-
ods from the machine learning community (Fisher, 1925; Heckerman, Geiger, &
Chickering, 1995; Cherkassky & Mulier, 1998). The dissimilarityD reaches its
maximum whenpk = .5, as can be seen in Figure 1. The dissimilarity between
adjacent table columns is computed here as sum of the dissimilarity between all
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Figure 1: Dissimilarity (D) between a one feature document with different feature
frequency.
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the features in the feature set:

D(ci, cj) =
∑
k

pk(1− pk) + (1− pk)pk. (2)

The difference in information content of different columns may be computed
using Shannon’s notions of information, where the self information of an event
x is− log(Pr(x)). The expected information dissimilarity,DI , may be computed
as the average information associated with a feature (the entropy of the feature)
multipled by an indicator variable showing the presence or absence of a difference
between features:

DI(ci, cj) = −
∑
k

|ci,k − cj,k| (pk log pk + (1− pk) log(1− pk)) , (3)

whereci,k is the value for featurek in table columnci, andpk is the probability of
featurek occurring. The trend in values forDI is shown in Figure 2.

Using these information-theoretic measures of topical distance between table
columns, features may be ordered within each column’s feature vector so as to
help minimize the expected distance between columns (Losee, 1992). Features
may be placed in any order; however, the expected dissimilarityDI , computed
over the set of columns, is minimized whenthose features with the lowest ex-
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Figure 2: Difference in information content (DI) using Shannon’s measure of
information.
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pected dissimilarity are placed furthest to the right in the feature vector. The
features on the right change most frequently, as can be seen informally by count-
ing from 0 to 100 in the decimal system and noting how often changes occur in
the one’s column and how often changes occur in the ten’s column. Placing the
features with the lowest expected dissimilarity on the right results in a lower aver-
age dissimilarity over the set of vectors as the features with the greatest expected
similarity (as changes occur) are changed most frequently, rather than the features
whose changes would cause an overall decreased expected similarity to occur. As-
suming that all the features occur withp < .5, thenDI(ci,k, cj,k) will be lower for
neighboring columnsi andj when the rarer terms (with the lower dissimilarity
values) are on the right side of the vector and it is most likely that the difference
between the neighboring columns will be due to a smaller difference on the right
rather than a larger difference on the left.

Consider the use of features in a library classification system. In most libraries,
the code used on the spine labels for books that represents a topic likeoceanwill
be to the left of the symbols used forlighthouse. The topicoceanis a broad one
and somewhat general. It surely has a higher probability of occurrence in most
libraries than does the much less common featurelighthouse. The probabilistic
and information-theoretic arguments provide a justification for this ordering. It
similarly provides a justification for placingoceanas a feature on the left hand
side of the numbering system used in representing features, as opposed to the
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placement oflighthousewhich should be on the right hand side of the vector.
Using our earlier example and the table columns with features described in

Table 2, we can see that if the dissimilarityD (derived from probabilitiesp and
1−p) associated with theOfficeQfeature occurring is greater than the dissimilarity
associated with theAddressQfeature, then theAddressQfeature being placed on
the right will result in a lower average dissimilarity between columns than if the
columns were reversed.

8 Adaptive Organizing: Economic Principles

Economic considerations may be used to weight features to improve feature or-
dering in a vector beyond the ordering consistent with information-theoretic con-
cerns. While information-theoretic considerations may be used to organize fea-
tures to produce a better coding system that is consistent with the Gray code,
economic weightings may be expected to further improve performance.

A negative utility or loss, denoted byL, is associated with features having
different values in columns that are located less than an arbitrarily chosen distance
apart. For a given feature, the economic loss of having a0 for that feature value in
the first table column and a1 for that feature in an adjacent, second fragment, is
denoted asL0,1, with a similar loss,L1,0, for the first table column having a value
of 1 and the second table column having a value of0.

The loss associated with the dissimilarity of featurek, having a different value
in one randomly selected table column than in a second randomly selected adja-
cent table column, may be computed as

DL = L1,0pk(1− pk) + L0,1(1− pk)pk
= (L1,0 + L0,1)pk(1− pk), (4)

the product of the expected dissimilarity and the loss associated with that expected
dissimilarity, yielding the expected loss. As before,pk is the probability that fea-
turek has the value1 in the database of table columns. We assume thatL0,0 and
L1,1 equal0. For notational simplicity, we denote the sum of lossL1,0 + L0,1 as
Lk for featurek.

The loss associated with placing table columnsi andj immediately adjacent
to each other, each withn binary features, denoted asci,1, ci,2, . . . , ci,n for table
columni, with similar notation for table columnj, is

DL(ci, cj) =
n∑
k=1

|ci,k − cj,k|Lk, (5)
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Figure 3: Expected loss associated with a one feature document being adjacent to
a document with a different feature frequency, with the cost difference being1, 3,
or 5.
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assuming that features may be treated independently. This is the sum of losses
for features which differ in value between table columni and j. The effect of
different costs and probabilities is shown in Figure 3.

Using this, features used in the Gray code are ordered so that the expected loss
(DL) associated with an ordering of table columns is minimized. We do this by
placing the lowestDL values furthest to the right in each column’s vector, with
the highest values to the left.

The parameters of the model may be learned so that the organizing system
adapts to an individual’s preferences and needs. The feedback may be elicited di-
rectly from the end user, with costs associated with viewing columns with specific
features being used to determine the average cost associated with each feature.

The system may also gather information non-reactively. For example, the sys-
tem may keep track of data elements requested over a period of time, and then
treat the features associated with these data elements as having greater benefit and
positive utility than other features.

As an application of this economic technique, consider our earlier example
of the featuresoceanandlighthouse. In most libraries, the featureoceanis con-
sidered to be of greater economic value to general users, providing a justification
for its placement to the left of the featurelighthousein the classification numbers
placed on book spines. This greater economic value implies a greater loss when
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this feature changes. A user who focuses on lighthouses would undoubtedly place
this as an economically more important feature than the general featureocean.
The ordering for this individual would probably be reversed from that found best
for the general public.

Using the address example with data in Table 2, we can similarly see that by
assigning varying costs to specific features, such asOfficeQor AddressQ, we can
modify the ordering of features and thus economically adapt our tables to a user’s
personal cost structures. It is this sort of adaptability of the classification and
organizing systems that allows us to produce tables that are designed to minimize
the subject distance (and associated cognitive dissonance) between columns.

9 Discussion

There are several ways these models might be modified or that their application
might be expanded.

When a column is displayed, one might consider the option of displaying un-
requested but highly related columns of data when there is sufficient room for its
display and when there will not be significant degradation of the viewing experi-
ence. Columns might be added only when the degradation is relatively small, such
as might be found when the number of columns does not exceed a fixed small size
(e.g., a maximum of 6 columns) and the table will not become significantly more
complex for the end user.

Another issue is which column of data should be displayed on the far left side
of the table in cultures that read from left to right, with a similar concern about
what is displayed on the right in cultures that scan from right to left. The Gray
code places the columns into an order that can be visualized as a ring. If the ring
is cut at one place and laid out flat, we can imagine each point in the order being
a column header.

Where the cut should take place is an open question. One method is to find the
largest subject gap between adjacent columns. By “cutting” the ring at that point
and stretching the cut ring out from left to right on the table, we have placed more
similar columns near each other, minimizing the total subject distance between
one side of the table and the other side.

A second method is to take a given query and place the column nearest the
query vector (or exactly representing it) at the center of the table. One then builds
up the sets of columns consistent with the Gray code moving out from this cen-
terpoint. Using the “ring” metaphor, we might view this as placing the point of
the ring representing the query on the center of the table, cutting the ring on the
diametrically oppositive point, and then flattening out the ring. Clearly we may
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need to limit the number of columns included and may need to effectively truncate
the ring on either the right or the left or both.

Columns on the table may be placed so that a key column is placed on the
left margin (which readers often see first if they read and visually scan from left
to right.) One could also question whether the most interesting material should
be placed in the center of the table This may be determined based on empirical
studies of how people use tables.

While in a modelling sense there are strong similarities between rows and
columns, and the Gray code can be used to order either rows or columns, or both
rows and columns, social conventions sometimes suggest differing uses for rows
than for columns. For example, people often place text row labels in alphabetical
order, such as in a table of countries and their populations. Similarly, a table of the
richest100 executives might place the executives in decreasing order of their net
worth. These orderings are economically rational because the cost of jumps be-
tween adjacent rows is minimal. This can be consistent with our economic model
of feature ordering. The effectiveness of these orderings allows us to emphasize
that the Gray code based ordering is largely topical. Additionally, we see that eco-
nomics can seemingly override the non-economic Gray code in cases where the
cost of following the Gray code is high and the cost of following another (conven-
tional) method is very low. In most circumstances, there is a higher economic and
cognitive cost in the sequential orderAfghanistan–Liechtenstein–Albania than in
the orderAfghanistan–Albania–Liechtenstein.

One may also treat features as non-binary within a Gray code. These features
may then provide their own intrinsic ordering within the ordering provided by the
Gray code. For example, a 3 valued Gray code (e.g. 0, 1, 2) might have a set
of entities with feature sets and ordering as shown (each feature set is in one set
of parentheses):(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 2), (0, 1, 1), (0, 1, 0), (0, 2, 0),
(0, 2, 1), (0, 2, 2), (1, 2, 2), and so forth. Note that2 is adjacent to0 because when
counting0, 1, 2, the number after2 is again0. Such non-binary features may be
represented alphabetically and may be consistent with alphabetical ordering (e.g.
26-valued for a 26 letter alphabet) or ordering by decimal value, for example.

10 Conclusion

When data is requested from a store of structured information, data may be dis-
played in tabular form. We have suggested how this data may be arranged to
best present the information to users, and, more specifically, how can it be made
adaptive so as to be optimized for a particular user group or a specific information
need. The justification for this arrangement provides mathematical support for the
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use of facets and chain indexing, as well as an understanding about why they are
effective.

We have provided a method by which tables can be organized so that the
columns are placed in a manner that decreases the average subject distance be-
tween the columns. Using the Gray code, we are able to automatically order all
the feature combinations so that the columns have this desirable organization. A
variety of Gray codes may be used for this application. Features in the Gray
code may be ordered so that the coding system used is one that has a lower inter-
column subject distance than with many other codes. Means were described by
which user preferences may be incorporated. In addition, criteria are developed
by which the system displays columns of data that are not requested but that are
related to requested data.
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