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Abstract

We review a variety of techniques to improve efficiency in information retrieval. Given the increasing
volumes of data that are available electronically, understanding and using such techniques is critical.

We address several efficiency concerns, but our primary focus is on index processing since it dom-
inates the computational demands of information retrieval. Given the importance of index processing,
in addition to a general overview, we include some recent index maintenance results. These results
demonstrate that by delaying the updating of the index when additional documents are introduced to the
collection, efficiency is improved without noticeably degrading the effectiveness of information retrieval.

We conclude with an overview of parallel processing in information retrieval. Since users cannot

tolerate lengthy response times, searching large text databases requires vast computational resources.

Parallel processing is currently the only means to support these demands. We focus on only those
approaches that are currently commercially viable.

Introduction

Information Retrieval (IR) refers to the processing of user requests, commonly referred to as queries, to
obtain relevant information. This problem differs fundamentally from most computer science problems in
that the nature of the result is not well defined. For example, the correctness of the results of a sorting
algorithm, namely the sorted nature of a list, is easily judged. For an IR result set, however, it is human
judgment that determines whether or not a given document is relevant to a given query. It has been shown that
different people will frequently disagree on this judgment [31]. Hence, there is a need to define assessment
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measures for IR. Two commonly used measures#setivenesandefficiency Our primary focus in this
paper is on efficiency.

Effectiveness measures the accuracy of the result set in terms of two megsapesionandrecall.
Precision is defined as the fraction of relevant documents retrieved to the total number retrieved. Recall is
defined as the fraction of relevant documents retrieved to the total number of relevant documents collection-
wide. Note that the universe of known relevant documents in a given query is very difficult to identify; hence,
only a few document collections exist where recall has been estimated. These collections are commonly used
for experimentation and evaluation.

Efficiency measures how fast a result is obtained. This may be computed using standard algorithmic
complexity analysis (e.g., the “Big Oh” notation) or more empirically measured with statistics such as
response time, disk 1/O, etc.

Most research in IR has centered around effectiveness since it is well accepted that current retrieval sys-
tems exhibit mediocre accuracy. Moreover, users have become complacent in their expectation of accuracy
of information retrieval systems [14]. Therefore, many information retrieval researchers focus on effec-
tiveness and tend to ignore efficiency since, given poor effectiveness, efficiency is of secondary concern.
For example, a recent compendium of seminal research papers [40] did not include a single paper whose
primary focus was efficiency. The reality is, however, that commercial systems depend upon efficiency for
their success. A system that takes too long to respond to a user request will simply not be used.

There are only a few basic means to improve efficiency. The first includes the preprocessing step
of building an inverted index. An index is a structure that is common to all commercial IR systems that
identifies, for each term, a list of documents that the term appears in. Various compression algorithms exist
for inverted indexes, and we review some of them.

Another means of improving efficiency is in query processing. Some terms may be ignored, and other
shortcuts may be taken based on the query. We overview some past solutions and note that a combination
of such optimizations may yield greater efficiency than any technique individually. Typically, however,
reduction in processing time comes at the expense of accuracy; hence, a close examination of the impact of
using such techniques is necessary.

To process the ever-increasing volume of data while still providing acceptable response times, a few
parallel processing algorithms specifically for IR were developed. Unfortunately, most of these approaches
were machine-specific and did not achieve wide commercial adoption. One commercially available tech-
nigue is the treatment of an IR system as an application of a relational database system. By using a rela-
tional database system hosted on a parallel platform, a scalable parallel IR algorithm is obtained without
any special-purpose software [23]. Essentially, the database system does the parallelization, and the IR
application merely takes advantage of this framework.

Relatively little research exists on distributed IR, but we focus on work done on data replication and
tuning with regard to web search engines. This is relevant because every web search engine is an example
of a distributed IR system.

The key algorithm most retrieval systems are implementing is cedledance rankingThe basic idea
is to compute a measure of similarity between the query and each document. Towards implementing this
basic idea, we describe various approaches that were and are being used. Initially, we focus on inverted
index creation and storage. We continue with a discussion and some experimental results regarding inverted
index updating frequencies. Having described inverted indexing, we turn our attention to query processing



where we describe several generic query processing algorithms that impact efficiency. Subsequently, we
review several more recent parallel and distributed information retrieval approaches and conclude with our
overall observations.

Note that this article focuses primarily on efficiency and does not address traditional approaches to
improve accuracy. When accuracy improving utiltities such as passages, proximity, relevance feedback,
clustering, n-grams, etc. are used, some straight-forward modifications to the structures we describe are
needed. Briefly, passage processing refers to indexing documents by sub-documents [4]. Proximity pro-
cessing allows users to query on specific location within a document [37]. In doing so, a user can specify
that the terms in the query must occur within some fixed window of the document. Relevance feedback
refers to the process of adding terms to the query or adjusting the term weights based on documents that
have been identified, either automatically or manuallyiedesvantto the user query [35]. Document clus-
tering is used to automatically group documents into distinct clusters of related documents—once this is
done a search may be directed at a particular cluster [38]. Finally, n-gram processing is used to search for
fragments of terms—often useful in corrupted document collections [7].

2 Inverted Index

Typically, an IR system builds an inverted index to efficiently find terms in a document collection. An
inverted index consists of two components, a list of distinct terms referred to asltheand a set of lists
referred to aposting lists.Figure 1 illustrates an inverted index.

Consider a document collection in which document one contains four occurrenappleind two
occurrences gbie. Document two contains three occurrenceagmjle. The index contains the entriapple
andpie. The posting list is simply a linked list that is associated with each of these terms. In our example,
for simplicity, we illustrate the posting entry with only the document number and term frequency. However,
the structure of a posting list entry does vary from implementation to implementation. It always includes
the document number but can also include entries for term frequency, term weights, and possibly position
data. Thus, we have—

apple— (2,3) (1,4)
pie — (1,2)

The entries in the posting lists are stored in descending order by document humber since it is typically
more efficient to insert at the head of the list than in any other location. Clearly, the construction of this
inverted index is expensive, but once built, queries can be efficiently executed.

As processing continues, the current posting list is stored in memory. Memory is allocated dynamically
for each new posting list entry. With each memory allocation, a check is made to determine if the memory
reserved for indexing has been exceeded. If it has, processing halts while all posting lists resident in memory
are written to disk. Once processing continues, new posting lists are written. With each output to disk,
posting list entries for the same term are chained together.

Index processing terminates when all of the terms have been processed. At this point, the inverse
document frequencydf) for each term is computed by scanning the entire list of unique terms. The inverse
document frequencies measure the uniqueness of the terms in the collection. The higher the value, the more



Figure 1: Inverted Index
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unique is the term. Once thdf is computed, it is possible to compute a weight for each document. This
weight is used to normalize for the size of a document—the idea is that a large document should not be
ranked either too high or too low simply because of the number of terms that appear in the document.

This is done by scanning the entire posting list for each term.

An entry in the list of documents may also contain the location of the term in the document (e.g., word,
sentence, paragraph) to facilitate proximity search. A search that includes proximity involves locating a set
of terms that are found within a text window of a given size in the document. Additionally, an entry can
contain a manually or automatically assigned weight for the term in the document. This weight is often
based on term frequency and is used in computations that generate a measure of relevance of the document
to the query. Once this measure is computed, the retrieval algorithm identifies all the documents that are
“relevant” to the query by sorting the measure of relevance calkchiarity coefficientor retrieval status
value(RSV) and presenting a ranked list to the user.

A similarity coefficient is a measure that estimates the relevance of a document to a given query. Many
techniques exist to compute similarity coefficients (e.g., vector space model, probabilistic model, extended
Boolean model, genetic algorithms, neural networks). For a comprehensive survey of these techniques, see
[17].
Indexing requires additional overhead since the entire collection is scanned and substantial I/O is re-
quired to generate an efficiently represented inverted index for use in secondary storage. However, the use
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Table 1. Sample Zipf Distribution

rank | frequency | constant
1 1.00 1
2 0.50 1
3 0.33 1
4 0.25 1
5 0.20 1

of indexing has been shown to dramatically reduce the amount of I/O required to satisfy an ad hoc query
[45]. Upon receiving a query, the index is consulted, the corresponding posting lists are retrieved, and the
documents are ranked based on the contents of the posting lists.

The size of the index is another concern. Many indexes equal or even exceed the size of the original
text. This means that storage requirements are doubled due to the index. However, compression of the index
typically results in a space requirement on the order of ten percent of the original text [48]. The terms or
phrases stored in the index depend on the parsing algorithms that are employed.

The size of posting lists in the inverted index can be approximated by the Zipfian distribution—Zipf
proposed that the term frequency distribution in a natural language is such that if all terms were ordered
and assigned a rank, the product of their frequency and their rank would be constant [50]. In Table 1, we
illustrate the Zipfian distribution when this constant equals one. UBing % wherer is the rank, F is
the frequency of occurrence, and C is the value of the constant, an estimate can be made for the number of
occurrences of a given term. The constant, C, is domain-specific and equals the number of occurrences of
the most frequent term.

2.1 Compressing an Inverted Index

A key objective in the development of inverted index files is to develop algorithms that reduce 1/0O and
storage overhead. The size of the index file determines the storage overhead imposed. Since large index
files demand greater 1/O to read them, the size also directly affects the processing times. To reduce the size
of the index file, compression techniques are used. Two primary areas in which an inverted index might
be compressed are compression of the index and compression of the posting lists. We focus on posting list
compression since the size of the posting list dominates the total size of the inverted index.

The King James Bible (about five megabytes) contains 9,020 distinct terms and the Text REtrieval Con-
ference (TREC) collection (slightly over two gigabytes) contains 538,244 distinct terms [48]. The number
of new terms always slightly increases as new domains are encountered, but it is reasonable to expect that
it will stabilize on the order of millions of terms. With an average term length of six, a four byte document
frequency counter, and a four byte pointer to the first entry in the posting list, fourteen bytes are required
for each term. For a conservative estimate of eight million terms, the uncompressed index is likely to fit
comfortably within 128 MB.

Given the relatively small size of an index and the ease with which it fits in memory, we do not
describe a detailed discussion of techniques used to compress the index. We note that stemming and stop



Table 2: Uncompressed Encoding Example

value | uncompressed bit string
250 | 00000000 00000000 00000000 11111Q10
70 | 00000000 00000000 00000000 01000110
00000000 00000000 00000000 00000111
00000000 00000000 00000000 00000011
00000000 00000000 00000000 00000001

oW~

word processing reduce the storage size requirement, and Huffman encoding can be used in a relatively
straightforward fashion to further compress the index [48].
Consider an entry for an arbitrary tergn, that indicates; occurs in documents 1, 3, 7, 70, and 250.

t; —+250,70,7,3,1

Using no compression, the five entries in the posting list require four bytes each (this is only to store the
document identifier) for a total of twenty bytes. Thus, in this example, the uncompressed posting list requires
160 bits of storage. (See Table 2).

To overview index compression algorithms, we first describe a relatively straightforward one that is
referred to as Byte Aligned (BA) index compression [16]. BA compression is done within byte boundaries
to improve run-time at a slight cost to the compression ratio. This algorithm is easy to implement and
provides good compression (about fifteen percent of the size of an uncompressed inverted index when stop
words are used). A better compression ratio is given by [48], but variable length encoding is more complex
to implement.

2.1.1 Fixed Length Index Compression

As previously discussed, the entries in a posting list are stored in descending order by document identifier.
Therefore, for any document identifier, only tiéferencebetween the current identifier and the identifier
immediately preceding it is needed to represent an entry. For the case when no other document identifier
exists, a compressed version of the document identifier is stored. Using this technique a high proportion of
relatively low values is assured.

Since the posting list differences are generally small, they can be stored using only a small number of
bits. That is, for each difference, the minimum number of bytes required to store this value is computed.
Table 3 indicates the range of values that can be stored, as well as the length indicator for one, two, three,
and four bytes. This indicator requires two bits. For document collections excezimipcuments, this
scheme can be extended to include a three bit length indicator which extends the r&fte-tb.

Our example of Byte-aligned (BA) compression uses the leading two high order bits to indicate the
number of bytes used to represent the value. There are four possible combinations of two bit representations;
thus a two bit length indicator is used for all document identifiers. Integers are stored in either 6, 14, 22,
or 30 bits. Optimally, a reduction of each individual data record size by a factor of four is obtained by this



Table 3: Index Difference Encoding

length number of bytes required
0<zr <64 1
64 <z < 16,384 2
16,384 < x < 4,194,304 3
4,194,304 < z < 1,073,741,824 4

Table 4: BA Encoding Example

value | compressed bit string

180 | 01 000000 10110100
63| 00111111
00 000100
00 000010
00 000001

SN

method, since, in the best case, all values are less2than64 and can be stored in a single byte. Without
compression, four bytes are used for all document identifiers.

Consider once again our earlier posting list example. In this case, the differences between entries are
180, 63, 4, 2, and 1. For the last four values, only one byte is required; for the first value, 180, two bytes
are required. Recall that using no compression, a total of twenty bytes (160 bits) was needed to store the
posting list. Using BA compression requires only 48 bits (see Table 4).

2.2 Variable Length Index Compression

Witten, Moffat, and Bell [48] also use the differences in the posting list, and like BA compression, capitalize
on the fact that for most long posting lists, the difference between two entries is relatively small. To compress
the index differences, a family of universal codes, called Elias encoding [10], is used. This code represents
an integerz with 2|logoz| + 1 bits. The first|log.x| bits are the unary representation|dbgez|. (Unary
representation is a base one representation of integers using only the digit one. Thefyiislbepresented
aslll111;.) After the leading unary representation, the next bit is a single stop bit of zero. At this point, the
highest power of two that does not exceet represented. The nejlogsz | bits represent the remainder
of 2z — 2182 ] in binary.

As an example, consider the compression of the decimal 14. Fieg,14| = 3 is represented in
unary as 111. Next, the stop bit is used. Subsequently, the remainder ®f°8:%! = 14 — 8 = 6 is stored
in binary using|log, 14| = 3 bits as110. Hence, the compressed code 1dy, is 1110110, a seven bit
representation.

Decompression is done in one pass because it is known that for a number biighprior to the stop



bit, there will ber. bits after the stop bit.

Returning to our same example, the differences of 1, 2, 4, 63, and 180 are stored as shown in Table 5.
This requires only 35 bits, thirteen less than the simple BA compression. Also, our example contained an
even distribution of relatively large offsets to small ones. The real gain is that very small offsets require only
a single bit.

Table 5: Elias Encoding Example

value | compressed bit string
180 | 11111110 0110100
63| 111110 11111
110 00
100
0

IS

2.3 Varying Compression Based on Posting List Size

The gammma encoding scheme varies the compression according to the posting list. Generalized, it is a
coding paradigm based on a vector V containing positive integevehered v; > N. To code integer
z > 1 relative to V, findk such that—

k—1 k
SPTES
7=1 7=1

In other words, find the first component of V such that the sum of all preceding components is greater than
or equal to the valueg, to be encoded. Assume that x equals seven. Using a vectorM 02, 4, 8, 16,

32>, we find the first three components (1,2,4) that are needed to equal or exceed seveis €pial to

three. Nowk can be encoded in some representation (unary is typically used) followed by the difference:

k-1
d:x—Zvj—l
j=1

Using this sum we havel = 7 — (1 + 2) — 1 = 3 which is now coded iflog, vi | = [logy, 4] = 2 binary
bits. With this generalization, thescheme can be seen as using the vector V composed of poweslof 2
2,4,8,...,> and codingk in binary.

Clearly, V can be changed to give different compression characteristics. Low valwespitimize
compression for low numbers, while higher values iprovide more resilience for high numbers. A clever
solution given by [51] was to vary V for each posting list such that & =, 2b, 4b, 8b, 16b, 32b, 64b >
whereb is the median offset given in the posting list.



Using our example of 1, 2, 4, 63, 180, the mediarquals four, results in the vector V< 4, 8, 16,
32, 64, 128, 256 (see Table 6). This requires thirty-five bits as well, and we can see that, for this example,
the use of the median was not such a good choice as there was wide skew in the numbers. A more typical
posting list in which numbers are uniformly closer to the median frequently results in better compression.

Table 6: Difference-Specific Encoding Example

value | compressed bit string
180 1111110 01001100
63 11110 000100Q
4 011
2 001
1 000

2.4 Updating Automatically Assigned Term Weights

The inverse document frequenayif() of a given terny is defined adog d—]JYt whereN is the total number of
documents in the collection anff; is the number of documents that contain tetnThe logarithm is used

to scale down the collection frequency so that a single term does not skew the results of an entire query.
Clearly, as shown in the above definition, the addition of a document requires the re-computatioi/pf the

for each termin the collection.

Since theidf is simply an estimate, it is reasonable to expect that it does not need to be updated with
every new document. This premise was initially demonstrated in [47] for a small document collection, but
its validity for larger collections was previously not investigated. Experimentation using only very small
collections is known to be not necessarily indicative for larger collections [2].

Researchers demonstrated that it is not necessary to updadé fitreevery new document [13]. In an
unpublished study, thief update interval was evaluated by using a training collection of fifty percent of the
document collection. Sequences of text were added to the collection, aiulfistieere updated at different
intervals.

Consider a collection with one document that contains termhasandc. Assume that th&lf's for each
of these terms are computed. A new document wjth andd requires an update to tidfs. However, it may
not be necessary to update ilés if they are not significantly changed by the new document. This would
be fine except a term such dsvould now not be present in the inverted index even though its document
has been added to the system. A user who searcheéswould not find this document even though it was
just added. Hence, even if it is not necessary to updatedfievery often, the risk is that a single term
could appear between the updates ofittie and that term could be extremely useful for obtaining accurate
results.

In the study, a 320 file document collection was used. Files contained multiple documents from within
the Wall Street Journal portion of the TIPSTER collection [20]. Each file was roughly one megabyte in size.



Fifty TREC queries were used. Initially, the training set consisted of 160 files. That is, files numbered 1-160
were used as the training set, and files numbered 161-320 were incrementally added to the collection. The
idfs were initially computed using a training set. After trainiidfs were only updated every u files, where

u =10, 20, 40, 80, and 160 files. (160 files is equivalent to no updates @fftBrcept for the training set.)

The effect on the average precision was measured every twenty files to determine the impact of not updating
theidf.

Precision can be computed at various points of recall. Average precision refers to an average of preci-
sion at various points of recall. Figure 2 illustrates the average precision for various update frequencies. The
five different lines shown are not significantly different from each other. The average precision scores for
each update interval are shown in Table 7. It can be seen that the average precision does not vary by more
than 0.3 percent.

Table 7: Training Set 1 (First 160 files)

Update Total Number of Files
Frequency] 160| 180| 200| 220| 240| 260| 280| 300| 320
160 17.49| 16.88| 16.21| 16.37| 15.81| 15.28 | 15.55| 15.57 | 16.14
80 17.49| 16.88| 16.21| 16.37| 16.11| 15.58| 15.85| 15.88 | 16.32
40 17.49| 16.88| 16.24| 16.37| 16.11| 15.58| 15.85| 15.88| 16.32
20 17.49| 16.71| 16.24| 16.39| 16.11| 15.58| 15.85| 15.89| 16.32
10 17.49| 16.62| 16.04| 16.02| 15.81| 15.28| 15.55| 15.57| 16.14

In the initial experimentation, no significant degradation in accuracy due to deidfyeddating was
noticed. However, the order of appearance of new terms (order of document insertion into the collection),
could significantly affect these results (i.e., order). Consider a case where a term that was not seen in the
training set appears betwegltf updates and occurs in a relevant document. Hence, changing the order of
the input files could result in such a term appearing in the training set and subsequently being found in a
relevant document.

To test the impact of the input order, the authors reversed the training set and the document collection.
In Figure 3, the results obtained when reversing the order are presented (see also Table 8). That is, files
numbered 161-320 were used as a training set, and files 1-160 were incrementally added to the collection.
Somewhat surprisingly, the order did not significantly affect average precision measurements. Hence, for a
relatively large training set, the updateidfs has a negligible effect on accuracy.

The curves across Figures 2 and 3 should not be compared since the documents used in the training sets
differ. Instead, what should be noticed is that in both sets of results the frequency of the update intervals of
theidf's does not significantly affect the average precision as the precision numbers of the different update
frequencies are roughly equivalent.

Having concluded that given a sufficiently large training set, the order of document insertion had little
significance, the effects of the size of the training set were investigated. The training set size for the results
presented in Figures 2 and 3 encompassed half of the document collection. The hypothesis was that the
reason for the failure to detect any effect on average precision ddéupdate frequency was because the
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Figure 2: Training Set 1
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training set was relatively large. To measure the effect of training set size on accuracy, training collections
of ¢ = 80, 40, 20, and 10 files were tested.

In Figure 4, the results for these smaller training sets are shown (see also Table 9). In the study, the
authors used the firgtfiles, ¢ = 80, 40, 20, and 10 as a training set. A significant difference in the average
precision measurements occurs when the training set drops below 20 files. At roughly 7% of the document
collection size, the training set is small enough to illustrate the impact of extending the intervalidif the
update. One reason for this effect is that there are far fewer distinct terms in a training set of size ten files
than one of 160 files. In Table 10, the number of distinct terms for different training set sizes is shown. For
a training set size of ten files, only 34,953 distinct terms were observed. The training set size of 160 files
had nearly four times the number of distinct terms, thereby dramatically increasing the chance that a query
term will appear in the training set.

The conclusion of the study was that given a sufficiently large (rich in the number of unique terms)
training collection, thedfs need not be updated frequently to support high average precision measures.
Thus, efficiency can be enhanced by initially collecting a sufficiently rich set of terms, computinglteir
prior to future document insertion, and then, only infrequently, updating the collddfi®nit remains an
open question as to how to determine what is a sufficient set of terms to serve as the basis for the collection
idfs.
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Table 8: Training Set 2 (Files 161-320)

Update Total Number of Files

Frequency] 160| 180| 200| 220| 240| 260| 280| 300| 320
160 20.71| 20.04| 18.72| 17.99| 17.56| 17.69| 17.27| 16.59| 16.32
80 20.71| 20.04| 18.72| 17.99| 17.44| 17.60| 17.15| 16.53| 16.30
40 20.71| 20.04| 18.80| 18.07| 17.44| 17.60| 17.14| 16.48| 16.30
20 20.71| 20.06| 18.80| 17.95| 17.44| 17.58| 17.14| 16.52| 16.30
10 20.71| 20.06| 18.80| 17.95| 17.44| 17.58| 17.14| 16.52| 16.30

Table 9: Effectiveness Difference as a Variation of Training Set Size

Training Total Number of Files

SetSize| 160| 180| 200| 220| 240| 260| 280| 300| 320
160 | 20.71| 20.04| 18.72| 17.99| 17.56| 17.69| 17.27 | 16.59| 16.32
80 20.00| 19.35| 18.32| 17.74| 17.29| 17.48| 17.08 | 16.54 | 16.29
40 20.90| 19.89| 18.61| 18.07| 17.37| 17.70| 17.25| 16.45| 16.20
20 17.48| 17.34| 16.38| 15.99| 15.39| 15.75| 15.47| 15.28 | 15.03
10 16.15| 15.98| 15.08| 14.56| 13.95| 14.37| 14.13| 14.00| 13.80

3 Query Processing

Recent work has focused on improving query run-time efficiency. Moffat and Zobel have shown that query

performance can be improved by modifying the inverted index to support fast scanning of a posting list

[28, 29]. Other work has shown that reasonable effectiveness can be obtained by retrieving fewer terms in
the query [18]. A recent study showed that the computation can be reduced even further by eliminating

some of the complexity found in the vector space model [21]. In this section, we review some representative
work in improving query run-time efficiency.

3.1 Inverted Index Modifications

Witten, Moffat, and Bell show how an inverted index can be segmented so as to allow for a quick search of
a posting list to see if a particular document is found [48]. The typical ranking algorithm scans the entire
posting list for each term in the query. An array of document scores is updated for each entry in the posting
list. Witten et. al. suggest that the least frequent terms should be processed first.

The premise is that less frequent terms carry the most meaning and probably have the most significant
contribution to a high-ranking document. The entire posting lists for these terms are processed. Some
algorithms suggest that processing should stop diiecuments are assigned a non-zero score. The premise
is that at this point, the high-frequency terms in the query will simply be generating scores for documents

12



Figure 3: Training Set 2
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that will not end up in the final top documents, whereis the number of documents that are displayed to
the user.

A suggested improvement is to continue processing all the terms in the query, but only update the
weights associated with the terms found indlgocuments. In other words, after some threshold sfores
has been reached, the remaining query terms become part of an AND (they only increment documents who
contain another term in the query) instead of the usual vector space OR. At this point, it is cheaper to reverse
the order of the nested loop that is used to increment scores. Prior to red@dtnges, the basic algorithm
is—

For each ternt in the query Q
Obtain the posting list entries for
For each posting list entry that indicateis in document
Update score for documeit

For query terms with small posting lists, the outer loop is small; however, when terms that are very
frequent are examined, extremely long posting lists are prevalent. Also,dafi@cuments are accessed,
there is no need to update the score for every document. It is only necessary to update the score for those
documents that have a non-zero score.

To avoid scanning very long posting lists, the algorithm is modified to be—

13



Figure 4: Effectiveness Difference as a Variation of Training Set Size
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For each ternt in the query Q
Obtain posting listp, for documents that contain
For each document in the reserved list of documents
Scan posting lisp for z
if 2 exists
update score for document

The key here is that the inverted index must be changed to allow quick access to a posting list entry.
It is assumed that the entries in the posting list are sorted by a document identifier. As a new document
is encountered, its entry can be appended to the existing posting list. The authors propose to change the
posting list by partitioning it and adding pointers to each partition. The posting list can quickly be scanned
by checking the first partition pointer (which contains the document identifier of the highest document in
the partition and a pointer to the next partition). This check indicates whether or not a jump should be made
to the next partition or if the current partition should be scanned. The process continues until the partition is
found and the document desired is matched against the elements of the partition. A partition size of about
1,000 resulted in the best CPU time for a set of TREC queries against the TREC data [29].

3.2 Partial Result Set Retrieval

Another way to improve run-time performance is to stop processing after some threshold of computational
resources has been expended. One approach has been to count disk I/O and stop after a threshold has been
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Table 10: Training Sets vs Number of Unique Terms

training set size | number of unique terms
160 140078

80 97408

40 69651

20 48730

10 34953

reached [49]. The key to this approach is to sort the terms in the query based on some indicator of term
goodnesand process the terms in this order. By doing this, query processing stops after the important terms
have been processed. Sorting the terms is really analogous to sorting their posting lists. Three measures
used to characterize a posting list are now described.

3.2.1 Cutoff Based on Document Frequency

The simplest measure of term quality is to rely on document frequency. This was described in [18, 19] which
showed that using between twenty-five to seventy-five percent of the query terms after they were sorted by
document frequency resulted in almost no degradation in effectiveness for the TREC-4 document collection.
In some cases, effectiveness improves with fewer terms because lower ranked terms are sometimes noise
terms, e.g.good, nice, usefulThese terms have long posting lists that result in scoring thousands of docu-
ments and do little to improve the quality of the result. Using term frequency is a means of implementing

a dynamic stop word list in which high-frequency terms are eliminated without using a static set of stop
words.

3.2.2 Cutoff Based on Maximum Estimated Weight

Two other measures of sorting the query terms are described in [49]. The first computes the maximum term
frequency of a given query term &§,,., and uses the following as a means of sorting the query.tFhe.
is computed as the highest term frequency for the query term in any of the documents that contain this term.

tfmax X idf

The idea is that a term that appears frequently in all the documents in which it appears is probably of more
importance than a term that appears infrequently in the documents that it appears in. The assumption is that
the maximum value is a good indicator of how often the term appears in a document.

3.2.3 Cutoff Based on the Weight of a Disk Page in the Posting List

The cutoffs based on term weights can be used to characterize posting lists and choose which posting list to
process first. The problem is that a posting list can be quite long and may have substantial skew. To avoid
this problem, a new measure sorts disk pages within a posting list instead of the entire posting list. At index
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creation time, the posting lists are sorted in decreasing order by term frequency, and instead of just a pointer
that points to the first entry in the posting list, the index contains an entry for each page of the posting list.
The entry indicates the maximum term frequency on a given page. The posting list pages are then sorted
by—

tfmaa % tdf x f(I)

wheref(I) is a function that indicates the number of entries on page I. This is necessary since some pages
will not be full, and a normalization is needed such that they are not sorted in exactly the same way as a full
page.

Unfortunately, this measure requires an entry in the index for each page in the posting list. However,
results show (for a variety of query sizes) that only about forty percent of the disk pages need to be retrieved
to obtain eighty percent of the documents that would be found if all one hundred percent of the pages were
accessed. Note that the scalability of these results may be limited since these tests were performed using
small document collections.

3.3 Query Processing in Web Search Engines

For web search engines, some additional problems occur with query processing. First, some documents are
extremely long. These take up substantial space in the inverted index and also take more time to add to the
inverted index. Every web search engine has some threshold for the size of a document, such that after that
cutoff they no longer index the contents of the document. As of December 1997, web search engines were
found to index only a third of the available document collection [39].

Also, it is to a web page author’s advantage to have a web page show up as the result ofrdhetieey
or not the web page is relevant to the queln this regard, a new problem occurs—that of an adversary
actively trying to mislead a search engine. Hidden tags are often used to match queries with text that does
not appear frequently in a document. We are not aware of any formal algorithms in this area, but web search
engines all implement some functionality to avoid simply matching on hidden tags.

4 Modern Parallel Implementations

Partitioning the workload across a variety of processors in a logical single machine is referrpartallas
processing First, we provide some background on parallel processing models and then describe approaches
that parallelize access to the inverted index. For a given query, a sequential algorithm has to reference
the inverted index for each term. A parallel algorithm can reference the inverted index for several terms
simultaneously.

Most prior parallel IR systems were machine specific. These parallel machines, for the most part, did
not achieve wide commercial acceptance. Therefore, the parallel IR systems based on these machines were
not widely commercially accepted. We do discuss these machines—for an overview of work done in this
area see papers including [1, 3, 6, 33, 34, 42, 43, 44].

We continue by describing the use of a parallel relational database system as a foundation for an IR
system. The reliance on parallel databases is of interest since parallel database engines have achieved wide

16



commercial interest and are typically not machine-specific. Hence, it is reasonable to expect that such an IR
approach can achieve commercial adoption.
Finally, we describe parallel algorithms for document clustering.

4.1 Background

Parallel architectures are often described based on the number of instruction and data streams, namely single
and multiple data and instruction streams. A complete taxonomy of different combinations of instruction
streams and data was given in [12]. To evaluate the performance delivered by these architectures on a given
computation the speedup measure is typically uSgeedugs defined as%, whereT is the time taken by

the bestsequential algorithm, an, is the time taken by the parallel alpgorithm under consideration. The
higher the speedup, the better the performance. The motivation for measuring speedup is that it indicates
whether or not an algorithm scales. An algorithm that has near linear speedup on sixteen processors may
not exhibit similar speedup on hundreds of processors. However, an algorithm that delivers very little or no
speedup on only two processors will certainly not scale to large numbers of processors.

Multiple Instruction Multiple Data (MIMD) implies that each processing element is potentially exe-
cuting a different instruction stream. This is the case in most of the modern parallel engines such as the Intel
Paragon and IBM SP2, as well as some of the earlier machines such as the Intel iPSC and the NCUBE/10.
Synchronization is more difficult with this approach, as compared to a Single Instruction Multiple Data
(SIMD) system because one processor can still be running some code while another is waiting for a mes-
sage.

In SIMD architectures, all processors execute the same instruction concurrently. A controlling master
processor sends an instruction to a collection of slave processors, and they all execute it at the same time on
different sequences of data. In such cases, large speedups using SIMD engines are possible.

A primary approach to implement a parallel information retrieval system is to create a parallel index
and distribute it across multiple processors. Figure 5 illustrates an inverted index that has been partitioned
between two processors. This is intrinsically more difficult in that simply partitioning the index and sending
an equal number of terms to each of thgrocessors does not always result in equal amounts of work. Skew
in posting list size poses a difficult problem.

4.2 Partitioning a Parallel Index

An analytical model for determining the best means of partitioning an inverted index in a distributed mem-
ory/distributed 1/0O environment is given in [46]. Three approaches were studied. The first, referred to as
the systemapproach, partitioned the index based on terms. The entire posting list foateas placed on

disk 1, the posting list for terrb was placed on disk 2, etc. The posting lists were assigned to disks in a
round-robin fashion.

Partitioning based on documents was referred to asligiestrategy. In this approach, all posting list
entries corresponding to document 1 are placed on disk 1, document 2 on disk 2, etc. Documents were
assigned to disks in a round-robin fashion. Hence, to retrieve an entire posting list f@; iersmecessary
to retrieve the partial posting lists from each disk for tearand merge them. Although the merge takes
more time than the system entry, the retrieval can take place in parallel.
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Figure 5: Partitioning an Inverted Index
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The hoststrategy partitioned posting list entries for each document and placed them on separate pro-
cessors. Hence, document 1 is sent to processor 1, document 2 to processor 2, etc.

An analytical model was also developed by fitting a frequency distribution to some text (a more realistic
approach than blindly following Zipf's Law). The results of the analytical simulation were thduastand
disk strategy perform comparably, but tegstenstrategy does not perform as well. This is because the
systenstrategy requires sequential reading of potentially long posting lists and transmission of those lists.
Thesystenstrategy becomes competitive when the communication costs are dramatically reduced.

4.3 Parallel IR As an Application of an RDBMS

One of the motivating features behind the development of an information retrieval engine as an application
of the relational database model was the availability of commercial parallel database implementations. Exe-
cuting the SQL scripts that implement the information retrieval application on a parallel relational database
engine results in a parallel implementation of an information retrieval system. Given the commercial accep-
tance of parallel relational database technology, efficient implementations are widely available.

In [18], the feasibility of implementing a parallel information retrieval application as a parallel rela-
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tional database application was demonstrated. Using a four processor NCR DBC/1012 database engine,
nearly uniform processor loads and disk access rates were observed. From these findings, it was hypothe-
sized that it was possible to develop a scalable, parallel information retrieval system using parallel relational
database technology.

To validate this hypothesis, scaling experiments were conducted using a twenty-four processor NCR
DBC/1012 database engine [24]. The initial findings were, however, disappointing. Using the same re-
lational table definitions described in [18], only a forty percent processor efficiency was achieved. Fur-
ther investigation revealed that the limiting factor to scalability was the non-uniform processor load on the
DBC/1012.

The DBC/1012 supports automatic load balancing. The hashing scheme used to implement the load
balancing is based on the index structure in the defined relational schema. In the DBC/1012 architecture
used, to evenly distribute the load, a uniformly distributed set of attributes must be the input to the hashing
function. In the initial implementation, the hashing function was based on terms, and thus, was nonuniform.
Modifying the input to the hashing function to include document identifiers as well as terms resulted in a
uniform distribution of load to the processors. In later experimentation, a balanced processor utilization
of greater than 92% was demonstrated, and a speedup of roughly twenty-two using twenty-four nodes, as
compared to a comparable uniprocessor implementation, was achieved.

It is important to note that the use of the relational model for document retrieval has been proposed
since the late 1970’s [25, 26]. The idea was basically dropped because of the increased overhead found in
the relational model. Many inverted indexes work by storing the index in memory so no 1/O is required to
access the index and retrieval of posting lists often only take one or two I/O instructions. Using the relational
model presumably will increase 1/0 because of the repetition of the document identifier in each element of
the posting list. Additionally, all current commercial IR systems use an inverted index.

Hence, the ideas described in this sub-section are still the subject of some controversy. Several reasons
exist to seriously consider the relational approach. The first is that the relational approach does not require
the index to fit into main memory and very few I/O instructions are required to find a specific term. Also,
the relational approach has been shown to scale due to parallel processing. Similar attempts to parallelize
inverted index algorithms are described throughout this section, but they often fail to provide good speedup.
Finally, the relational approach opens up the possibility of updating the inverted index without much diffi-
culty. Updating a single posting list entry in an inverted index is non-trivial. The index entry must be found
and the entire posting list must then be scanned. In an environment where updates to documents frequently
occur, the relational approach offers additional flexibility.

4.4 Summary of Parallel Indexing

Parallel processing within information retrieval is becoming more applicable as the cost of parallel I/O is
reduced. Previous algorithms had problems with memory limitations and expensive communication between
processors. Signature files were popular but have not been used recently due to their unnecessarily high I/O
demand and the diffculty in using them to compute more sophisticated measures of relevance. Parallel
inverted index algorithms are becoming more popular, and with improved compression techniques, they are
becoming substantially more economical.
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4.5 Parallel Implementation of Clustering and Classification

Document clustering and classification algorithms partition the document collection into separate sets of
related documents. The idea is that medical documents are placed in one cluster while documents about
baseball are placed in another cluster. If a user query is submitted to only the relevant sets of documents in
the collection, the search space is dramatically reduced.

Recently, parallel clustering and classification implementations were developed for the Intel Paragon
[36]. Using a production machine, the authors developed a parallel implementation for the single-pass
clustering and single-link classification algorithms. Using Wiall Street Journabortion of the TREC
document collection, the authors evaluated the efficiency of their approach and noted near-linear scalability
for sixteen nodes.

To accurately compare the efficiency of the developed approaches, the clusters derived from both the
parallel and serial implementations must be identical. Otherwise, an improvement in the efficiency of the
algorithm (via parallelism) could come at the expense of accuracy.

The single-pass clustering algorithm is data, presentation, and order dependent. Namely, the order in
which the data are presented as input directly affects the output produced. Thus, it was necessary to provide
mechanisms in the parallel implementation that mimicked the order of the presentation of the documents as
input to the algorithm. Guaranteeing the identical order of document presentation resulted in the formation
of identical clusters in both the serial and parallel implementations. The authors noted that the size of
the clusters varied dramatically and suggested measures to reduce the cluster size disparity. Since the size
disparity is a consequence of the single-pass algorithm, no modification was made.

5 Distributed Algorithms

Another means of improving efficiency is to distribute processing across many physical machines. Work on
distributed IR systems began in the late 1980s. A prototype used to investigate implementation details of a
distributed IR system is described in [27]. Today, every web search engine is essentially an implementation
of a distributed IR system because the actual documents are stored across the Internet. We also describe
general performance improvements to distributed IR systems.

5.1 Replication

Distributed structured DBMS algorithms were first developed in the early 1980s. These algorithms, such
as the two-phase commit [5, 8, 11, 32], support updates to multiple sites in a single transaction. Since
the premise behind information retrieval systems is that updates occur relatively infrequently, replication
algorithms specific to information retrieval systems have been developed. These algorithms improve perfor-
mance by ensuring that the data that are searched are physicakyo the user.

A recent algorithm designed to support replication of Internet archives was given in [30]. Essentially,
the algorithm estimates topological information between source nodes and replicas. Groups are then repli-
cated based on their physical topology. Those that are deemed closest (lowest communication cost based on
available bandwidth and propagation delay) are automatically grouped together. The source node then has
to refresh only to one replica in a group and it can then be later propagated to each group member.
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Individual replicas request data from a source member. Whenever a replica is transferred, the desti-
nation sends a message to members in its group indicating that it has received a replica that has a given
timestamp. When a site receives this message, it checks to see if its current replica is out of date, and if so, it
requests a copy. Itis not possible for a site to receive data from more than one place at a given time because
each replica is only provided data upon request. Overhead associated with this approach is relatively small
and is primarily based on the frequency with which communication costs are estimated. The key to this
approach is that the physical location of replicas is chosen automatically (some prior work required manual
administration) and the heuristic constantly tries to send data to sites that have a low communication cost.

5.2 Improving Performance of Web-based IR Systems

Using a web server to implement an information retrieval system does not dramatically affect the types of
algorithms that might be used. Some work is being done to apply web server performance improvements
to the development of distributed information retrieval systems [22]. In those cases, the use of pre-started
processes, otliettes avoids the start-up costs of starting processes from a typical common gateway in-
terface (CGI). This was used to implement a prototype system that provides search access to eight library
collections.

Early work in the area of web-based distributed query processing was done by [9] in which a system
that used the Wide Area Information Service (WAIS) only sent queries to certain servers based on an initial
search of the content of those servers. The content was described by some specific fields in the documents
that exist on each server suchlasadlineof a news article osubjectof an e-mail message. The use of a
content index is the middle ground between sending the request to all of the servers, or providing a very
detailed full-text index, and sending the request to only those servers that match the index.

More recent work done for the Glossary-of-Servers Server (GIOSS) builds a server that estimates the
best server for a given query using the vector-space model [15]. The query vector is matched with a vector
that characterizes each individual server. Thenagervers are then ranked and searched. Several means
of characterizing a server are explored. The simplest is to suri-itieweights of each term on a given
server and normalize based on the number of documents on the server. This yields a centroid vector for each
server. Atf-idf vector space coefficient can then be used to rank the servers for a given query. Different
similarity coefficient thresholds at which a server is considered a possible source and assumptions used to
estimate which databases are likely to contain all of the terms in the query are also used. The index on the
GIOSS server is only about two percent of the size of a full-text index.

6 Summary

We described a variety of approaches to improve efficiency in IR. Without efficiency, users will simply not
take advantage of an IR system to find the information they require.

We started with a discussion of the indexing. The inverted index is the basic structure underlying every
current IR algorithm. Any means of improving the efficiency in which an inverted index is used significantly
improves overall IR performance. Interestingly, an inverted index may be compressed to only ten percent of
its original size. We described compression algorithms that improve run-time performance by reducing disk
I/0.
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We then described some recent research that questions the need to continuously update the inverse
document frequency. The research efforts showed that effectiveness is not significantly degraded when the
idf is not updated continuously—only infrequent updates are needed. This clearly impacts efficiency because
updates to inverse document frequencies are computationally expensive.

Subsequently, we discussed query processing. Many techniques exist to reduce the workload required
by a given query. It has been shown that careful removal of some terms in the query does not degrade
effectiveness and can dramatically improve efficiency. Other simple techniques were also discussed.

Query processing and compression of inverted indexes are really the two most fundamental means of
improving efficiency in a sequential environment. We then turned our attention to an environment with either
multiple processors in a single machine (parallel processing) or multiple machines (distributed processing).

We described some parallel IR algorithms. Few algorithms fit into this class, but research in the use
of a relational database system to serve as the foundation for an IR engine (thus treating the whole problem
of IR as an application of a relational database system) has shown the potential to scale quite well using
general purpose processors.

We also discussed distributed IR algorithms. These are more relevant to the current computing environ-
ment because every web search engine is an example of a distributed IR system. Current web search engines
allocate only a single CPU second for a query of the entire web [41]. Hence, efficiency considerations are
critical when implementing real systems.

Although greater attention has traditionally been placed on the effectiveness of information retrieval
systems, efficiency issues are critical. Failure to optimize the efficiency of an information retrieval system
can result in a highly accurate system that has prohibitive execution or storage performance. As storage tech-
nology continues to improve and decrease in cost, storage constraints are becoming less critical. However,
with the continued exponential growth of online data, storage constraints are still a concern and run-time
performance considerations are of tantamount importance.
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