The role of the nitrate-nitrite-nitric oxide pathway during hypoxia

Colin R Carriker, Ann Gibson, Christine Mermier

Abstract


Recently, dietary nitrate has been shown to reduce oxygen cost during submaximal sea level exercise.  The conversion of nitrate to nitrite to nitric oxide has been implicated as an oxygen independent pathway, and as such, may be a potent ergogenic aid during hypoxic conditions as occurs during high altitude exposure. Several studies have noted improved vascular and myocardial function/outcomes when NO was activated prior to ischemia or reperfusion injury.  Therefore, increased NO formation/availability during incidence of hypoxia or otherwise impaired blood flow may reduce neuronal damage, improve cognition, and further improve motor function in individuals experiencing ischemic conditions. Consuming dietary nitrate may result in increased NO formation as nitrate consumption has previously been shown to increase plasma nitrite (an in vivo marker of NO production).  Increased NO formation during incidence of hypoxia may negate some of the negative consequences of the reduced oxygen diffusion gradient between blood and tissues.   


Keywords


Nitrate Supplementation, Oxygen Cost, High Altitude, Performance

Full Text:

PDF

References


Chih C-P, Roberts Jr EL. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab. 2003 Nov;23(11):1263–81.

Schurr A. Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab. 2006 Jan;26(1):142–52.

Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998 Jul 1;46(4):281–309.

Charriaut-Marlangue C, Bonnin P, Pham H, Loron G, Leger P-L, Gressens P, et al. Nitric oxide signaling in the brain: A new target for inhaled nitric oxide? Ann Neurol. 2013 Jan;73(4):442–8.

Terpolilli NA, Kim S-W, Thal SC, Kataoka H, Zeisig V, Nitzsche B, et al. Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res. 2012 Mar;110(5):727–38.

Bailey SJ, Vanhatalo A, Winyard PG, Jones AM. The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. Eur J Sport Sci. 2012 Jul;12(4):309–20.

Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC. Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun. 1998 Aug;249(3):767–72.

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9.

Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol. 1997 Jan;82(1):359–63.

Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci. 2008 Jun;27(11):2783–802.

Wink DA, Hines HB, Cheng RYS, Switzer CH, Flores-Santana W, Vitek MP, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011 Jun;89(6):873–91.

Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999 May;1411(2-3):351–69.

Clementi E, Brown GC, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A. 1999 Feb;96(4):1559–62.

Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol. 2004 Nov;6(11):1129–34.

Erusalimsky JD, Moncada S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2524–31.

Moncada S, Bolaños JP. Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem. 2006 Jun;97(6):1676–89.

Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001 Nov;33(11):1897–918.

Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier J-C, Rebsamen MC, et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med. 2002 May;8(5):473–9.

Kanno S, Lee PC, Zhang Y, Ho C, Griffith BP, Shears LL 2nd, et al. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation. 2000 Jun;101(23):2742–8.

Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004 Feb;61(3):402–13.

González-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003 Feb;107(6):824–30.

Rooks CR, Thom NJ, McCully KK, Dishman RK. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol. 2010 Oct;92(2):134–50.

González-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol. 2004 May;557(Pt 1):331–42.

Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol. 2006 Jan;91(1):51–8.

Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgan WP. Brain activation by central command during actual and imagined handgrip under hypnosis. J Appl Physiol. 2002 Mar;92(3):1317–24.

Hettinga FJ, De Koning JJ, Schmidt LJI, Wind NAC, Macintosh BR, Foster C. Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating. Br J Sports Med. 2011 Jan;45(1):30–5.

Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol. 2000 Jul;61(4):397–414.

Rasmussen P, Nielsen J, Overgaard M, Krogh-Madsen R, Gjedde A, Secher NH, et al. Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol. 2010 Jun 1;588(Pt 11):1985–95.

Timinkul A, Kato M, Omori T, Deocaris CC, Ito A, Kizuka T, et al. Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study. Neurosci Res. 2008 Jul;61(3):242–8.

Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–6.

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001 Aug;357(Pt 3):593–615.

Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008 Feb;7(2):156–67.

Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995 Aug;1(8):804–9.

Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A. 2004 Mar;101(12):4308–13.

Duranski MR, Greer JJM, Dejam A, Jaganmohan S, Hogg N, Langston W, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005 May;115(5):1232–40.

Giraldez RR, Panda A, Xia Y, Sanders SP, Zweier JL. Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J Biol Chem. 1997 Aug;272(34):21420–6.

Ostergaard L, Stankevicius E, Andersen MR, Eskildsen-Helmond Y, Ledet T, Mulvany MJ, et al. Diminished NO release in chronic hypoxic human endothelial cells. Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H2894–2903.

Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009 Oct;107(4):1144–55.

Jones AM, Bailey SJ, Vanhatalo A. Dietary Nitrate and O(2) Consumption during Exercise. Med Sport Sci. 2012 Oct;59:29–35.

Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011 Mar;110(3):591–600.

Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol Oxf Engl. 2007 Sep;191(1):59–66.

Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011 Feb;13(2):149–59.

Ignarro LJ. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol Off J Pol Physiol Soc. 2002 Dec;53(4 Pt 1):503–14.

Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec;329(27):2002–12.

Raat NJH, Shiva S, Gladwin MT. Effects of nitrite on modulating ROS generation following ischemia and reperfusion. Adv Drug Deliv Rev. 2009 Apr 28;61(4):339–50.

Kelly J, Fulford J, Vanhatalo A, Blackwell JR, French O, Bailey SJ, et al. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol. 2013 Jan;304(2):R73–83.

Lidder S, Webb AJ. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br J Clin Pharmacol. 2013 Mar;75(3):677–96.

Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermιdis G, Kelly J, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013 Feb;

Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003 Oct;35(7):790–6.

Lauer T, Preik M, Rassaf T, Strauer BE, Deussen A, Feelisch M, et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci U S A. 2001 Oct;98(22):12814–9.

Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009 Jul;90(1):1–10.

Walker R. Nitrates, nitrites and N-nitrosocompounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit Contam. 1990 Dec;7(6):717–68.

Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995 Jun;1(6):546–51.

Smith AJ, Benjamin N, Weetman DA, Mackenzie D, MacFarlane TW. The Microbial Generation of Nitric Oxide in the Human Oral Cavity. Microb Ecol Heal Dis. 1999 May;11(1):23–7.

McKnight GM, Smith LM, Drummond RS, Duncan CW, Golden M, Benjamin N. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut. 1997 Feb;40(2):211–4.

Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry (Mosc). 1988 Nov;27(24):8706–11.

Heinecke JL, Khin C, Pereira JCM, Suárez SA, Iretskii AV, Doctorovich F, et al. Nitrite Reduction Mediated by Heme Models - Routes to NO and HNO? J Am Chem Soc. 2013 Mar;135(10):4007–17.

Jung K-H, Chu K, Ko S-Y, Lee S-T, Sinn D-I, Park D-K, et al. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke J Cereb Circ. 2006 Nov;37(11):2744–50.

Wang WZ, Fang X-H, Stephenson LL, Zhang X, Williams SJ, Baynosa RC, et al. Nitrite attenuates ischemia-reperfusion-induced microcirculatory alterations and mitochondrial dysfunction in the microvasculature of skeletal muscle. Plast Reconstr Surg. 2011 Oct;128(4):279e–287e.

Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007 Sep;204(9):2089–102.

Lundberg JO, Weitzberg E. NO-synthase independent NO generation in mammals. Biochem Biophys Res Commun. 2010 May;396(1):39–45.

Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010 Jan 15;48(2):342–7.

Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121–1131.

Kenjale AA, Ham KL, Stabler T, Robbins JL, Johnson JL, Vanbruggen M, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol. 2011 Jun;110(6):1582–91.

Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2008 Dec;19(4):333–7.

Ho JJD, Man HSJ, Marsden PA. Nitric oxide signaling in hypoxia. J Mol Med Berl Ger. 2012 Mar;90(3):217–31.

Santolini J. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons. J Inorg Biochem. 2011 Feb;105(2):127–41.

Jensen FB. The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim Biophys Acta. 2009 Jul;1787(7):841–8.

Gladwin MT, Schechter AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005 Nov;1(6):308–14.

Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A. 2007 Nov;104(45):17593–8.

Levett DZ, Fernandez BO, Riley HL, Martin DS, Mitchell K, Leckstrom CA, et al. The role of nitrogen oxides in human adaptation to hypoxia. Sci Reports. 2011 Oct;1:1–8.

Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003 Dec;9(12):1498–505.

Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res. 2007 Mar;100(5):654–61.

Martin DS, Ince C, Goedhart P, Levett DZH, Grocott MPW. Abnormal blood flow in the sublingual microcirculation at high altitude. Eur J Appl Physiol. 2009 Jun;106(3):473–8.

Martin DS, Goedhart P, Vercueil A, Ince C, Levett DZH, Grocott MPW. Changes in sublingual microcirculatory flow index and vessel density on ascent to altitude. Exp Physiol. 2010 Aug;95(8):880–91.

Gonzalez-Alonso J, Richardson RS, Saltin B. Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J Physiol. 2001 Jan;530(Pt 2):331–41.

Bärtsch P, Gibbs JSR. Effect of altitude on the heart and the lungs. Circulation. 2007 Nov;116(19):2191–202.

Maggiorini M, Mélot C, Pierre S, Pfeiffer F, Greve I, Sartori C, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001 Apr;103(16):2078–83.

Swenson ER, Maggiorini M, Mongovin S, Gibbs JSR, Greve I, Mairbäurl H, et al. Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA J Am Med Assoc. 2002 May;287(17):2228–35.

Duplain H, Sartori C, Lepori M, Egli M, Allemann Y, Nicod P, et al. Exhaled nitric oxide in high-altitude pulmonary edema: role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Am J Respir Crit Care Med. 2000 Jul;162(1):221–4.

Maggiorini M, Brunner-La Rocca H-P, Peth S, Fischler M, Böhm T, Bernheim A, et al. Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: a randomized trial. Ann Intern Med. 2006 Oct;145(7):497–506.

Richalet J-P, Gratadour P, Robach P, Pham I, Déchaux M, Joncquiert-Latarjet A, et al. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med. 2005 Feb;171(3):275–81.

Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010 Aug;56(2):274–81.

Kojda G, Kottenberg K, Nix P, Schlüter KD, Piper HM, Noack E. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res. 1996 Jan;78(1):91–101.

Friebe A, Mergia E, Dangel O, Lange A, Koesling D. Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A. 2007 May;104(18):7699–704.

Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of Dietary Nitrate on Blood Pressure in Healthy Volunteers. N Engl J Med. 2006 Dec;355(26):2792–3.

Jones AM, Bailey SJ, Vanhatalo A, Fulford J, Gilchrist M, Benjamin N, et al. Reply to Lundberg, Larsen, and Weitzberg. J Appl Physiol. 2011 Aug;111(2):619.




DOI: https://doi.org/10.12922/jshp.0027.2013

Refbacks

  • There are currently no refbacks.


 

 JSHP is hosted by the Mary and Jeff Bell Library, at Texas A&M University- Corpus Christi.