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Abstract 
 

Electrospun polymers have potential for use as tissue engineered scaffolds, yet in this environment they must be able to withstand 
multiple cycles of loading, slightly elevated temperatures, moisture, and other degrading chemical interactions. In this work, the 
effects of cyclic loading, temperature, and moisture on electrospun polycaprolactone are investigated through tensile testing of 
dogbone-shaped specimens.  Effects of fiber alignment on the macroscopic mechanical behavior are investigated by comparing 
samples collected on a flat plate with samples collected on a rotating cylinder.  Small temperature changes had only a small effect, 
but moisture significantly degraded the performance of the material. In cyclic testing, the mechanical behavior changed significantly 
after the first cycle, suggesting that damage to the original structure occurs when first loaded. A hyperelastic representative volume 
element-based constitutive model was modified to capture the effect of cyclic damage and was found to reproduce the general trend 
quite well. 
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1. Introduction 
 

Electrospun polymeric materials have potential use in a wide variety of applications, including as a promising 
scaffold for tissue engineering (see, for example two recent reviews by Martins et al. (2008) and Sill and von Recum 
(2008)). Through the electrospinning process, a nonwoven fabric consisting of nano-scale fibers is created.  The nano-
scale structure of the fibers combined with the connected porous structure between the fibers creates a surface that is 
highly amenable to cell seeding and proliferation. This work seeks to better characterize the mechanical behavior of 
electrospun polycaprolactone (PCL) under cyclic loading and to explore the influence of other relevant environmental 
variables.  An understanding of the behavior of the material is particularly important in bio-scaffolding, where the 
behavior under cyclic loading and the influences of temperature and moisture are critical. 

Electrospinning is a popular fabrication method due to its ability to create nanoscale structures with a high 
surface area to mass ratio and very high porosity when spun into three-dimensional scaffolds. In addition, it is a fairly 
simple, inexpensive processing technique that can be used to optimize the size, shape, and orientation of the electrospun 
fibers.  These attributes allow electrospun nonwoven mats to be used in many applications, such as molecular filtration 
membranes, electrical/optical equipment, biosensors, catalytic nanofibers, reinforcing fibers in composite materials, and 
more recently in drug delivery and wound dressings (Pham et al. 2006; Li et al. 2005; and Luong-Van et al. 2006). 

The mechanical properties of the electrospun mat strongly depend on the processing conditions. These include 
the properties of the solution, processing parameters, and ambient conditions (Pham et al. 2006 and Inai, Kotaki, et al. 
2005). The variable that most influences the fiber size and the morphology is the solution viscosity.  Increasing the 
polymer concentration also causes the fiber diameter to increase (Pham et al. 2006). The type of collector directly 
affects the morphology of the fabric. Metal plate collectors produce smooth fibers in a nonwoven randomly oriented 
matrix. Rotating cylindrical collectors can produce matrices with aligned nanofibers (Pham et al. 2006). 

In this work, we investigate the mechanical behavior of electrospun material with fibers that have been 
produced by two different spinning methods and collected on two different surfaces, one a flat plate and the other a 
rotating cylinder.  A constitutive model is then proposed to explain some of the results from the cyclic loading 
experiments. 

Prior research on the mechanical behavior of electrospun materials has focused on modulus, tensile strength, 
and elongation to failure, often investigating the effects of changing processing conditions or morphology on these 
properties (Lee et al. 2003; Lee et al. 2007, and Cha et al. 2006). A recent paper by Johnson et al. (2009) looked at the 
change in properties of electrospun poly(caprolactone) that has been exposed to in vitro conditions, and saw a drop in 
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modulus, strength, and elongation to failure.  Relatively little data has been published on the behavior under cyclic 
loads, in spite of the clear relevance for tissue engineering applications (Duling et al. 2008). More recent papers have 
investigated the properties of individual fibers (Lim et al. 2008 and Wong et al. 2008).   

Little prior modeling work has been done on electrospun polymers.  Engelmayr and Sacks (2006) have 
developed one model that predicts the role of the extracellular matrix (ECM) formation on the effective stiffness of a 
nonwoven tissue-engineered scaffold in bending.  This paper utilized a structural model to predict the effective stiffness 
of a needled nonwoven tissue-engineered scaffold. The findings from this study showed that needled nonwoven 
scaffolds are not always isotropic, that crimped polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) fibers act more 
like springs than straight rods, and that the main function of collagen reinforcement in nonwoven tissue-engineered 
scaffolds is an increase in the number of rigidly bonded cross-over points between fibers (Engelmayr and Sacks 2006).  
Work by Courtney et al. (2006) used the structural-based model to model the difference in mechanical behavior 
depending on the mandrel speed during fabrication.  In this work, we use a simpler RVE-based model to illustrate the 
effect of cyclic loading, but the ideas of evolving damage and morphology could be extended to the structural-based 
modeling ideas from the Sacks group. 
 
 
2. Materials and Methods 

Table 1 shows the parameters used to produce the electrospun poly(caprolactone) (PCL) samples.  The PCL used had 
a Molecular Weight of 65,000 (Sigma-Aldrich, St. Louis, MO), a melting temperature of ~60°C, and a glass-transition 
temperature of ~-65 - -60°C. 

        
 

 
 
 
 
 
 
 
 
 
 
Two types of electrospinning were used in this work: direct and indirect. Most of the PCL samples that were 

used in this study were directly spun. For the directly spun samples, a 25 wt. % solution was used. For the indirectly 
spun samples, a 12 wt. % solution was used.  For indirect spinning, the solution passed from the syringe through a 
plastic lead to a distant point where the tip was attached. The distance from the tip to the collector was 18 cm. For direct 
spinning, the tip was directly attached to the syringe and the tip was 15 cm from the collector.     

Horizontal electrospinning was conducted using the direct electrospinning method, but instead of collecting the 
material on a flat steel plate, the PCL was spun horizontally onto a ½ inch diameter mandrel, that was rotated at 2500 
rpm. After the electrospinning process was complete, the cylindrical sample was cut longitudinally to produce a 3 inch 
by 1.5 inch sheet that was then ready to be cut into dogbone samples that were either longitudinally aligned (along the 
length of the mandrel) or circumferentially aligned (around the circumference of the mandrel).  

Samples were cut in the shape of a dogbone using a metal template, No. 15 stainless steel surgical blades, and 
a 6 mm biopsy punch. The gauge length was 20.0 mm, the width 2.4 mm, and the thickness ranged from about 0.2 mm 
to 0.5 mm, depending on the spin time of the samples.      

Tensile tests were conducted on an Instron model 5869 electromechanical extended range test frame running 
Bluehill2 software, with a 500 N load cell and pneumatic grips to hold the samples. For the tests that were run at or 
slightly above 37 °C, an Instron model 3119-409 temperature chamber was utilized.  For the soak tests, samples were 
placed in a 37 °C bath of distilled water for the prescribed length of time and were removed from the bath just prior to 
testing at room temperature.  

Cyclic tensile tests were conducted at an extension rate of 0.8 mm/s. The main testing program considered in 
this work is as follows. The sample is pulled to 10% strain, returned to zero, pulled to 20% strain, returned to zero, and 
finally pulled to failure.  A limited number of other tests probed the effects of multiple cycles, different strain levels, or 
allowing time between cycles. 

Table 1. Parameters Used to Produce Electrospun PCL Samples.
Solution type PCL in Acetone 
PCL weight percentage 12 wt. % for Indirect Spinning 

25 wt. % for Direct & Horizontal Spinning 
Capillary flow rate 20 ml/hr 
Electric field 24 kV 
Spin time 10 – 15 minutes 
Distance from tip to collector 15 cm (direct) & 18 cm (indirect) 
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The outcome of the constitutive modeling suggests that the modified eight chain model was able to capture the 
behavior of the polymeric sample at low strains, but deviation from the experimental results occurred at higher strains, 
possibly because of the need to include time-dependence in the model.   

 Another area for future study is orientation development. Preliminary results suggest that there is some 
underlying remodeling taking place. The polymer fibers start out very random and unaligned. As loading occurs, the 
fibers gradually begin to orient and become significantly more aligned by the time failure occurs. This process of 
remodeling shows a lot of promise considering remodeling occurs in most biomaterials. Future work should be aimed at 
investigating whether or not this orientation is permanent or if the sample would be able to recover.  Other future 
modeling work could utilize an orthotropic model to capture anisotropy.  If a correlation can be found between fiber 
alignment, anisotropy, and mechanical strength, this could be used in design to tailor mechanical properties to meet 
design requirements. 
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