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Abstract

Scalar wave scattering by many small particles with impedance boundary condition and creating material with

a desired refraction coefficient are studied. The acoustic wave scattering problem is solved asymptotically and

numerically under the assumptions ka ¿ 1,ζm = h(xm )
aκ ,d =O(a

2−κ
3 ), M =O( 1

a2−κ ),κ ∈ [0,1), where k = 2π/λ is

the wave number, λ is the wave length, a is the radius of the particles, d is the distance between neighboring

particles, M is the total number of the particles embedded in a bounded domainΩ⊂R3, ζm is the boundary

impedance of the mth particle Dm , h ∈ C (D), D := ⋃M
m=1 Dm , is a given arbitrary function which satisfies

Imh ≤ 0, xm ∈Ω is the position of the mth particle, and 1 ≤ m ≤ M . Numerical results are presented for which

the number of particles equals 104,105, and 106.

Key words: wave scattering; particles; boundary impedance; many-body scattering; negative refraction;
metamaterials

1. Introduction

Recent research in materials science shows the existence of materials with negative refraction
coefficient, called metamaterials; see Eleftheriades and Balmain (2005). Creating such materials
is of practical interest since metamaterials have many applications but are not available in nature;
e.g. see Hansen (2008). By arranging their structure, one can create new materials with a desired
refraction coefficient. In Ramm (2005, 2007, 2008, 2009); Ramm and Andriychuk (2010); Ramm
(2010a,b, 2011, 2013a,b), A. G. Ramm has developed the theory of wave scattering by many small
bodies for acoustic and electromagnetic (EM) waves that can be used for creating materials with a
desired refraction coefficient.

In Ramm (2011, 2013b), he derived analytic formulas for the solution of wave scattering by many
small bodies (ie), the algebraic system (ori), and the reduced order system (red) for asymptotically
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solving wave scattering by many small bodies of arbitrary shapes, and developed an approach for
creating materials with a desired refraction coefficient. The small bodies can be particles whose
physical properties are described by their boundary impedance. This theory can be used in many
practical problems. In Ramm (2011, 2013b), an asymptotic solution of the many-body acoustic

wave scattering problem was developed under the assumptions ka ¿ 1,ζm = h(xm )
aκ ,d =O(a

2−κ
3 ), M =

O( 1
a2−κ ), and κ ∈ [0,1), where k = 2π/λ is the wave number, a is the radius of the particles, defined

as a := 1
2 max1≤m≤M diamDm and Dm is the mth particle, d is the distance between neighboring

particles, M is the total number of the particles embedded in a bounded domainΩ⊂R3, ζm is the
boundary impedance of the mth particle, h ∈C (D), D :=⋃M

m=1 Dm , is a given arbitrary continuous
function, Im h ≤ 0, xm ∈ Dm is an arbitrary point in the mth particle, and 1 ≤ m ≤ M .

This paper will focus on numerically solving the linear algebraic systems (ori), (red), and (ie) for
wave scattering problem by many small impedance particles, derived by A. G. Ramm, with various
values for a,d , and M , and with complex refraction coefficients and uniform distribution of particles.
The goal is to compare the numerical accuracy of the solutions to (ori), (red), and (ie) when the
number of particles is large, up to order 106. There was no results on solving wave scattering problem
for so many particles as in this paper. Furthermore, these results are used for creating materials
with a desired refraction coefficient, as was proved in Ramm (2013b). In this paper, the theory from
Ramm (2013b) is illustrated by numerical examples.

2. Wave scattering by one small impedance particle

Let us formulate the wave scattering problem with one body. Let D be a bounded domain of
one small particle in R3 , D ′ be the exterior domain of D, and S be the boundary of D. Let α ∈ S2

denote the direction of the incident plane wave, |α| = 1, and S2 denote a unit sphere. Finally, let u0

be the incident field that satisfies Helmholtz equation in R3, v be the scattered field which satisfies
the radiation condition, and a be the radius of the particle. Then the scattering problem consists of
solving the following system:

(∇2 +k2)u(x) = 0 in D ′, k = const > 0, (2.1)

uN = ζu on S, Im ζ≤ 0, (2.2)

u(x) = u0(x)+ v(x), (2.3)

u0(x) = e i kα·x , ka ¿ 1, and v satisfies the radiation condition: (2.4)

vr − i kv = o(1/r ), r := |x|→∞, (2.5)

where k is a wave number, ζ is the boundary impedance of the surface S, and N is the outer unit
normal vector to S. If Imζ≤ 0, it was proved in Ramm (2013a) that the system (2.1)-(2.5) has a unique
solution of the form

u(x) = u0(x)+
∫

S
g (x, t )σ(t )d t , (2.6)

where g (x, t) := ei k|x−t |
4π|x−t | and σ(t) is some continuous function which is uniquely defined by the

boundary condition.
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The asymptotic solution is then given by the formula

u ∼ u0 + g (x, x1)Q, when |x|À a, a → 0. (2.7)

Here

Q :=
∫

S
σ(t )d t '−ζ|S|u0(x1), a → 0, (2.8)

where |S| is the surface area of the small particle D, and x1 ∈ D. Instead of finding function σ(t ) to
get the solution u, one can just find the number Q.

3. Wave scattering by many small impedance particles

Consider a bounded domainΩ⊂R3 that is filled with a material consisting of M particles. This
material has refraction coefficient n0(x). Let Dm be the domain of one particle and Sm be the bound-
ary of Dm . Define D :=⋃M

m=1 Dm ⊂Ω and D ′ :=R3 \ D . The minimal distance between neighboring
particles, d , is much greater than the maximal radius of a particle, a = 1

2 max1≤m≤M diamDm , and

much less than λ, the wave length. Let ζm denote the boundary impedance of Sm , ζm = h(xm )
aκ , where

h(x) is a continuous function in D such that Im h ≤ 0 in D and κ is a const in [0,1). The scattering
problem is then formulated as follows:

(∇2 +k2n2
0(x))u = 0 in D ′, k = const > 0, (3.1)

uN = ζmu on Sm , Im ζm ≤ 0, 1 ≤ m ≤ M , (3.2)

u(x) = u0(x)+ v(x), (3.3)

u0(x) = e i kα·x , ka ¿ 1, and v satisfies the radiation condition: (3.4)

vr − i kv = o(1/r ), r := |x|→∞, (3.5)

where k is a wave number and n0(x) = 1 inΩ′ is the initial refraction coefficient such that Im n2
0(x) ≥ 0

inΩ and it is a Riemann-integrable function. It was proved in Ramm (2008) that if Im n2
0(x) ≥ 0 and

Im h(x) ≤ 0, then the system (3.1)-(3.5) has a unique solution of the form

u(x) = u0(x)+
M∑

m=1

∫
Sm

G(x, y)σm(y)d y, (3.6)

where G(x, y) is a Green function of the Helmholtz equation (3.1), G satisfies [∇2 + k2n2
0(x)]G =

−δ(x − y) in R3 and the radiation condition, and σm(y) are some continuous functions which are
uniquely defined by the boundary condition.

Let us assume for simplicity that x j is the center of D j , a ball of radius a. Then we define the
effective field acting on the jth particle as

ue (x j ) := u(x)−
∫

S j

G(x j , y)σ j (y)d y, (3.7)
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or equivalently

ue (x j ) = u0(x j )+
M∑

m=1,m 6= j

∫
Sm

G(x j , t )σm(t )d t . (3.8)

Let us derive the approximation formula for this effective field. From (3.6), one gets

u(x) = u0(x)+
M∑

m=1
G(x, xm)Qm +

M∑
m=1

∫
Sm

[G(x, y)−G(x, xm)]σm(y)d y. (3.9)

Here

Qm :=
∫

Sm

σm(y)d y. (3.10)

Instead of finding functions σm(y) to get the solution u, one can just find numbers Qm .
One can rewrite (3.9) as follows (see Ramm (2007), Ramm (2008)):

u(x) = u0(x)+
M∑

m=1
G(x, xm)Qm +o(1), (3.11)

as a → 0 and |x −xm | ≥ a. When a → 0, one can compute Qm asymptotically and get

Qm '−ca2−κh(xm)ue (xm), (3.12)

where c is a constant depending on the shape of a particle, |S| = ca2, where |S| is the surface area of
S. If S is a sphere, then c = 4π. Thus, one can rewrite (3.8) as

ue (x j ) ' u0(x j )−4π
M∑

m=1,m 6= j
G(x j , xm)h(xm)ue (xm)a2−κ, (3.13)

as a → 0 and 1 ≤ j ≤ M . Denote u j := ue (x j ),u0 j := u0(x j ),G j m := G(x j , xm), and hm := h(xm). In
(3.13), the numbers um , 1 ≤ m ≤ M , are unknowns. It was proved in Ramm (2011, 2013b) that under
the assumptions

d =O
(
a

2−κ
3

)
, and M =O

(
1

a2−κ

)
, for κ ∈ [0,1), (3.14)

u j , where 1 ≤ j ≤ M , can be found by solving the linear algebraic system (LAS)

u j = u0 j −4π
M∑

m=1,m 6= j
G j mhm a2−κum , as a → 0, 1 ≤ j ≤ M . (3.15)

We call this LAS the original system (ori).
Let ∆ be a subdomain inΩ and N (∆) be the number of embedded particles in ∆. We assume

that

N (∆) = 1

a2−κ

∫
∆

N (x)d x[1+o(1)], as a → 0, (3.16)

where N (x) ≥ 0 is a given continuous function inΩ, N (x) and κ can be chosen as desired.
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LetΩ be partitioned into P non-intersecting sub cubes ∆p ’s of size b such that b À d À a, where

b = b(a),d = d(a), and lima→0
d(a)
b(a) = 0. One can then derive, see Ramm (2011, 2013b), from (3.15)

and (3.16) that

uq = u0q −4π
P∑

p=1,p 6=q
Gqp hp Np up |∆p |, for 1 ≤ q ≤ P, (3.17)

where |∆p | is the volume of ∆p , Np := N (xp ), and xp is a point in ∆p , for example, the center of ∆p .
This linear system is much easier to solve than (ori) since P ¿ M . We will call the LAS (3.17) the
reduced ordered system (red).

If assumption (3.16) holds, the limiting integral equation obtained from (3.17) as a → 0 is

u(x) = u0(x)−4π
∫

D
G(x, y)h(y)N (y)u(y)d y, for x ∈R3, (3.18)

or equivalently

u(x) = u0(x)−
∫

D
G(x, y)p(y)u(y)d y, for x ∈R3, (3.19)

where p(x) := 4πh(x)N (x). This integral equation yields the limiting field in the medium created by
embedding many small particles with distribution (3.16); see Ramm (2008) and Ramm (2011, 2013b).
Any function p(x) can be created by choosing functions h(x) and N (x) properly; see Section 4. We
will call equation (3.19) the integral equation (ie).

The following result was proved in Ramm (2011, 2013b).

Theorem 1. If assumptions (3.14) and (3.16) hold, then there exists the limit

lim
a→0

||ue (x)−u(x)||C (R3) = 0, (3.20)

where u(x) is the unique solution to (ie).

4. A recipe for creating materials with a desired refraction coefficient

We want to create from the material with initial refraction coefficient n0(x) a new material with
a desired refraction coefficient n(x). We describe the recipe, proposed in Ramm (2011, 2013b), to
accomplish this. This recipe has three steps.

Step 1: Calculate p(x) using the following formula whose derivation can be found in Ramm (2011,
2013b)

p(x) = k2[n2
0(x)−n2(x)]. (4.1)

Step 2: Choose an arbitrary N (x) > 0 and use the relation p(x) = 4πh(x)N (x) to calculate h(x) :=
h1(x)+ i h2(x) as follows

h1(x) = p1(x)

4πN (x)
, h2(x) = p2(x)

4πN (x)
, (4.2)

where p1(x) = Re p(x) and p2(x) = Im p(x). Note that Im h(x) ≤ 0 holds if Im p(x) ≤ 0.
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Step 3: Embed M small particles of radius a with boundary impedance ζm = h(xm )
aκ , where

1 ≤ m ≤ M and M = 1
a2−κ

∫
ΩN (x)d x[1+o(1)], into the domain Ω at the approximately prescribed

positions according to formula (3.16).
The resulting materials, obtained by embedding many small particles intoΩ using this recipe,

will have the desired refraction coefficient n(x) with an error that tends to zero as a → 0, as proved
in Ramm (2008).

5. Numerical results

In this section, we present some numerical results of solving the wave scattering problem by
many small particles, in particular, solving (ori), (red), and (ie). For solving linear algebraic systems,
we used PETSC libraries developed at Argonne National Lab to do the computation in parallel; see
Balay et al. (2013). GMRES iterative method, see Saad and Schultz (1986), is used to find the solutions
to (ori) and (red) with relative error equal to 10−3. For solving (ie), we used the collocation method
from Ramm (2009), dividing the domain into many sub cubes, taking the collocation points as the
centers of these cubes, and then approximating the integral equation by the corresponding Riemann
sum. After that, we used GMRES iterative method to find an approximation of the solution to (ie)
with relative error equal to 10−3. Since the number of unknowns in (ori), (red), and (ie) are different,
we used an interpolation procedure to compare their solutions. For example, let the domainΩ be
a unit cube that contains M particles. We partitioned Ω into P small sub cubes to solve (red). In
this case, (ori) has M unknowns, say xi , 1 ≤ i ≤ M , and (red) has P unknowns, say yq for 1 ≤ q ≤ P .
Let us assume that M > P . To find the difference between solutions to (ori) and (red), we find all
the particles xi that lie in a sub cube ∆q corresponding to yq , and then find the solution differences
|xi − yq | for these particles. After that, we compute the following

sup
yq

1

N (∆q )

∑
xi∈∆q

|xi − yq |, (5.1)

where N (∆q ) is the number of particles in the sub cube ∆q . This gives us the solution difference
between (ori) and (red). The solution differences between (ori) and (ie), and (ie) and (red) are
computed similarly.

The following numerical experiments are of practical interest and importance. One wants to
find:
a) The solution differences between (ori) and (red), (ie) and (ori), and (ie) and (red), denoted e1,e2,
and e3, respectively.
b) The maximal value of a/d for which the solution differences are less than 3% or 5%, for example.
c) The values of a/d for which the solution difference becomes larger than say 10%, i.e. for which
the asymptotic formula (3.11) is no longer applicable.

The error considered later is the solution difference e = e1 +e2 +e3. One can find in Ramm and
Andriychuk (2010) numerical results for M ≤ 153 particles. In this paper, we will do the experiment
with a large number M of particles, such as M = 104,105 or 106. We assume that the domainΩ that
contains all the particles, is a unit cube. The following values of physical parameters are used to
conduct the experiment:
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- Wave number, k = 0.182651 cm−1;
- Direction of the incident plane wave, α= (1, 0, 0);
- The constant κ= 0.99;
- Volume of the domainΩ that contains all the particles, |Ω| = 1 cm3;
- Original refraction coefficient, n0 = 1+0i;
- Desired refraction coefficient, n = -1+0.001i;
- The function N (x) = M a2−κ|Ω|, i.e. particles are distributed uniformly in the unit cube;
- Number of small sub cubes after partitioning the domainΩ for solving (red), P = 125;
- Number of collocation points for solving (ie), C = 8000.
In this case, P <C < M . To do the solution comparisons, the interpolation procedure described

above is used to obtain the solutions to (red) and (ie) at the points corresponding to the position of
the particles.

In Figure 1, 2, and 3, the solid line shows the difference between solutions to (ori) and (red),
the dashed line shows the difference between solutions to (ie) and (ori), and the dot-dashed line
shows the difference between solutions to (ie) and (red). Radius of particles and distance between
neighboring particles are measured in centimeters. We will consider the error sum e, the sum of the
three solution differences, to choose the best ratio a/d for each a.

Table 1 and Figure 1 show the difference of solutions among (ori), (red), and (ie) when the number
of particles is 104 and the radius of each particle is 10−4 cm with various values for the distance d .
For 104 particles, the error e is smallest, equal to 1.29%, when d is 5×10−2 cm, or a/d = 2×10−3.
The error grows slowly when d is slightly away from this point, and it is greater than 5% when
d ≥ 5.8×10−2 cm or d ≤ 4.2×10−2 cm. The error is less than 10% when 1.6×10−3 ≤ a

d ≤ 2.5×10−3.
The solutions to the reduce system and the integral equation are very closed since the reduce system
is essentially the Riemann sum of the integral equation.

Table 1: Solution comparison of (ori), (red), and (ie) with M = 104, a = 10−4, and different d .

M=1.00E+4, a=1.00E-4

d 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02 7.00E-02
a/d 5.00E-03 3.33E-03 2.50E-03 2.00E-03 1.67E-03 1.43E-03

(ori) vs. (red) 9.75E-02 6.41E-02 3.07E-02 6.52E-03 3.84E-02 7.21E-02
(ie) vs. (ori) 1.05E-01 7.03E-02 3.74E-02 4.57E-03 4.11E-02 7.76E-02
(ie) vs. (red) 1.83E-03 1.83E-03 1.83E-03 1.83E-03 1.83E-03 1.83E-03
Error sum e 2.04E-01 1.36E-01 7.00E-02 1.29E-02 8.13E-02 1.52E-01

Table 2 and Figure 2 show the difference of solutions among (ori), (red), and (ie) when the number
of particles is 105, and the radius of a particle is 10−5 cm with different values for the distance d . In
this case, the error e is smallest, equal to 3%, when d is 2.3×10−2 cm, or a/d = 4.35×10−4. The error
grows quite slowly when d increases or decreases from this point. The error is less than 10% when
3.7×10−4 ≤ a

d ≤ 6×10−4.
Table 3 and Figure 3 show the difference of solutions among (ori), (red), and (ie) when the number

of particles is 106, the radius of a particle is 10−6 cm, and the distance d varies. In this case, the error
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Figure 1: Solution comparison of (ori), (red), and (ie) with M = 104, a = 10−4, and different d .

e is smallest, equal to 0.56%, when d is 1×10−2 cm, that is a/d = 1×10−4. The error grows slightly
when d is between 7×10−3 cm and 1.5×10−2 cm. After that, the error increases significantly. The
error is less than 10% when 8×10−5 ≤ a

d ≤ 1.4×10−4.

Table 2: Solution comparison of (ori), (red), and (ie) with M = 105, a = 10−5, and different d .

M=1.00E+5, a=1.00E-5

d 1.00E-02 1.50E-02 2.00E-02 2.30E-02 2.50E-02 3.00E-02
a/d 1.00E-03 6.67E-04 5.00E-04 4.35E-04 4.00E-04 3.33E-04

(ori) vs. (red) 9.04E-02 5.34E-02 1.64E-02 1.21E-02 2.74E-02 6.57E-02
(ie) vs. (ori) 1.02E-01 6.89E-02 3.56E-02 1.56E-02 1.44E-02 5.29E-02
(ie) vs. (red) 3.04E-03 3.04E-03 3.04E-03 3.04E-03 3.04E-03 3.04E-03
Error sum e 1.96E-01 1.25E-01 5.51E-02 3.07E-02 4.49E-02 1.22E-01

Table 3: Solution comparison of (ori), (red), and (ie) with M = 106, a = 10−6, and different d .

M=1.00E+6, a=1.00E-6

d 5.00E-03 7.00E-03 9.00E-03 9.50E-03 1.00E-02 1.50E-02
a/d 2.00E-04 1.43E-04 1.11E-04 1.05E-04 1.00E-04 6.67E-05

(ori) vs. (red) 8.26E-02 5.00E-02 1.73E-02 9.09E-03 1.62E-03 8.08E-02
(ie) vs. (ori) 8.95E-02 5.41E-02 1.86E-02 9.77E-03 9.16E-04 8.76E-02
(ie) vs. (red) 3.04E-03 3.04E-03 3.04E-03 3.04E-03 3.04E-03 3.04E-03
Error sum e 1.75E-01 1.07E-01 3.89E-02 2.19E-02 5.58E-03 1.71E-01
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Figure 2: Solution comparison of (ori), (red), and (ie) with M = 105, a = 10−5, and different d .

Figure 3: Solution comparison of (ori), (red), and (ie) with M = 106, a = 10−6, and different d .
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Next, we will look at the best ratio a/d for each radius a for which the error sum e is smallest, i.e.
the best ratio a/d will minimize the solution differences among the (ori), (red) and (ie). The error
sum is used as the criterion for the optimization. For each number of particles M and radius a, we
feed many different values of d to find the smallest error sum.

Note that since we use uniform distribution and the size of the domainΩ, radius a and number
of particles M are fixed, size ofΩ is 1 cm, a and M are fixed in each test case, we cannot increase
the distance between neighboring particles d to the size of the cubeΩ or decrease d to be less than

a. The distance d must be of order O
(
a

2−κ
3

)
as described in (3.14) so that all the particles lie in the

domainΩ.

Table 4: The best ratio a/d for each radius a.

M 1.00E+06 1.00E+05 1.00E+04

a 1.00E-06 1.00E-05 1.00E-04
d 1.00E-02 2.30E-02 5.00E-02

a/d 1.00E-04 4.35E-04 2.00E-03
(ori) vs. (red) 1.62E-03 1.21E-02 6.52E-03
(ie) vs. (ori) 9.16E-04 1.56E-02 4.57E-03
(ie) vs. (red) 3.04E-03 3.04E-03 1.83E-03
Error sum e 5.58E-03 3.07E-02 1.29E-02

Figure 4: The best ratio a/d for each radius a.

Table 4 and Figure 4 show the best ratios a
d , corresponding to the smallest error sums, when a is

10−4, 10−5 and 10−6 cm, and M is 104,105 and 106 particles, respectively. For instance, the best ratio
a/d at a = 10−6 cm is 1×10−4. The optimal values of d for which the optimizations, the smallest
error sums, are obtained are also given. As one can see, the optimal value of d is within a small
finite range and depends on the radius a. As a gets smaller, this range becomes smaller as well. The
quality of the approximation of the solution to the wave scattering problem depends on this range.
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6. Conclusions

The numerical experiment shows that the errors, i.e. solution differences of (ori), (red), and
(ie), depend greatly on the radius of particles, a, the number of particles, M , and the distance
between neighboring particles, d . The numerical results help us to better understand the asymptotic
solutions to the problem of acoustic wave scattering by many small impedance particles and the
possibility of creating materials with any desired refraction coefficient by using the asymptotic
approach. Indeed, for acoustic wave scattering, there is an optimal value of the ratio a

d for which
the error is acceptable and the asymptotic solution to (red) can be used as a good approximation
to the solutions of (ori) and (ie). This would help to simplify the computation process immensely,
specifically when the number of particles is extremely large and the radius of particles is very small.

In the future, we will consider developing a new algorithm for conducting the experiment with a
larger number of particles, say M from 107 up to 1012. The current algorithm does not allow us to
go beyond 106 particles since it requires O(n2) operations for matrix-vector multiplication in the
iterative process, which is very expensive in terms of computation time.
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