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Abstract:

The Helmholtz’s decomposition for the displacement field in terms of vector potentials is used to uncouple the system of
equations governing the motion of linear thermoelastic isotropic bodies. The solution proposed by Chandrasekharaiah and Cowin
(1989) is recovered in a rather different fashion.
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1. Introduction

When it comes to clarity and straightforwardness, the theoretical framework of continuum mechanics can be
summarized by the universally accepted works of Truesdell and Toupin (1960) for the linear theory, Naghdi-Hsu (1961)
for the treatment of elastostatics, Truesdell and Noll (1965) for the non-linear theory, Gurtin (1972) for the treatment of
elastodynamics and Carlson (1972) expanding on Gurtin’s work for the solution of the thermoelastic dynamic
equations. Two decades later, Chandrasekharaiah and Cowin (1989) (see also Chandrasekharaiah and Cowin (1993))
propose a unified solution for the theories of thermoelasticity and poroelasticity where the governing equations are
written in terms of field variables whose significance varies depending on the theories considered. In particular, the
solution for the thermoelastic equations and the connection with the Papkovitch’s solution (1932) is shown. The
Papkovitch-Neuber approach provides a solution of the three dimensional equations of linear elasticity (assuming a
homogeneous isotropic body) although it was later employed for finding analytical solutions of (uncompressible)
Navier-Stokes fluid equations. The same solution was also given by Neuber (1934) at a later time. The solution is based
on Helmholtz’s decomposition of the displacement field into the gradient of a scalar potential plus the curl of a vector
potential. It yields a simple expression for the displacement vector in terms of a harmonic vector potential and a
harmonic scalar potential. Because harmonic functions are easy to construct and have distinct properties, the
Papkovitch-Neuber’s solution turns out to be superior to other stress functions. In this paper, we recover the dynamic
solution for thermoelastic homogeneous linear isotropic bodies given by Chandrasekhariah and Cowin (1989) in a
rather different fashion. Helmholtz’s decomposition is used to uncouple the volumetric part of the displacement field
from the temperature field. The solution of the thermoelastic dynamic problem reduces to solving a sixth order vector
(wave) equation for the displacement field and a fourth order scalar (heat) equation for the temperature field. The
solutions for the displacement and temperature fields for the static as well as the isothermal cases are also shown to
exhibit striking similarities.

2. Preliminaries
Consider a deformable continuum & comprising infinitely many particles occupying a region ® with a closed

boundary éR and moving in a three-dimensional Euclidean space E°. We denote any subset of 8 by § and let § occupy

a region ? with a closed boundary 07, A typical particle X whose position is X in a fixed reference configuration K,

occupies the place x in the current configuration x of 8 at time ¢. The motion of a continuum is a smooth invertible
mapping defined by
x=x(X,1), 2.1
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i.e. to every material point of K corresponds a material point in K . The particle velocity v, the particle acceleration a,

the deformation gradient F relative to X, its determinant J and the (symmetric) non-linear Lagrangian strain tensor E
are respectively

2

v(x,t)=x(x,t):aX(X”), a(X,t)=5c'(X,t)=M (2.2)
ot t2 '

_o(X Lc_

F= S J=detF, E—Z(C D,

where a superposed dot denotes the material time derivative with respect to ¢ holding X fixed, I is the second order
identity tensor, C is the symmetric right Cauchy-Green tensor defined by C=F"F where the superscript T denotes the
transpose of the tensor.

The Lagrangian strain tensor E written in terms of the displacement gradient is

E= %(Vu +Vu' +Vu'Vu) , (2.3)

where V is the gradient operator and  is the relative displacement defined by

xX(X,t) =y(X,t)+u(X,t) (2.4)
from which the six independent components of E can be determined.
In the context of a purely mechanical theory, the three fundamental postulates governing the motion of a continuum are
the balance of mass, the balance of linear momentum and the balance of angular momentum.

In the (current) Eulerian configuration, the balance of mass is the continuity equation
p+pV.i=0, (2:5)
where p stands for the mass density function and is the divergence operator with respect to x.
If the continuum is subjected to a force field per unit mass b acting on all parts of the body & and a traction (or stress)
vector £ acts on its boundary 0%, the equation governing the motion of all particles is
V.T+pb=px, (2.6)
where T is the Cauchy stress tensor related to # by the relation 7= tn in which n denotes the outward unit normal to 0%

A consequence of the balance of angular momentum is that the Cauchy stress tensor is symmetric.
The counterpart of (2.6) written in the (referential) Lagragian form is

V. P+pb=p)X, 2.7)
where V. is the divergence operator with respect to X, P is the (non-symmetric) first Piola-Kirchhoff stress tensor and
py is related to P by the relation py=pJ. In the reference configuration, the stress vector is denoted by p and its relation

to P is p = PN, where N denotes the outward unit normal to a body with boundary oP,.
Another referential stress tensor can be introduced by means of a (Piola) transformation 7:

T:ﬂ{S}:éFSFT, (2.8)

where S is the second (symmetric) Piola-Kirchhoff stress tensor written as P = FS.

3. Thermoelastic Dynamic Equations
Here we follow the treatment of linear homogeneous isotropic thermoelasticity by Carlson (1972). For a body
whose temperature varies, the equation of motion (2.7) is supplemented by the energy equation

Py =p,r—V.q,+S.E, (3.1

where £, 7 and g, represent the time rate of change of the internal energy per unit mass, the heat supply per unit mass

and the heat flux per unit mass respectively and where S.E is the stress power.
We recall that in the linear theory, there is no distinction between the various measures of stress. Appealing to

a Taylor expansion about the point (0, 6, ) in the strain-temperature space, the stress tensor in a homogeneous material
can be written as
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a8(0,6, ) . a8(0,6, )

§=S(E.0)=5(0.6,)+—p a(6-9,)

(0-0,)+.., (3.2)

where 0 stands for the absolute temperature, §, is the absolute temperature in the reference configuration, 2—2: K is the

fourth order elasticity tensor and Z% = M 1is the stress-temperature tensor.

Assuming a stress-free reference configuration, another form of (3.2) is

S=K[E]+M(0-6,) (3.3)
One can appeal to the Second Law of Thermodynamics to construct an entropy function n =7(E,6)and to write the
energy equation as

Pl =p,r=V.gq,. (3.4)

The specific heat at constant strain ¢ can be written in terms of the internal energy or in terms of the entropy function as
0¢ on

=__(E,0)=0_-(E,0). 3.5

o B 0GB )

By expanding the functions ﬁ and £ around the point 0,6,), (3.4) takes the from
. : 1
—-O,M.e+p,c,0=p,yr—V.q,, E ~=E(Vu+VuT) (3.6)

where e has been obtained by neglecting the last term of (2.3) as is possible in the linearized theory and where ¢, refers

to the value of ¢ at zero strain.
An assumption for the heat flux is that it depends on the strain field, the temperature field and the temperature gradient

90 =499(E,0.8,), 8 =V0. (3.7
Introducing the conductivity x as
__04,(0.0.0) (3.8)
0g,
another form for the heat flux is
qy = -K8y- 3.9

Finally, if isotropy is assumed, the elasticity tensor for a homogeneous body subjected to small deformations can be
written as
K/[E] = A(tre)] +2 e, (3.10)

where A and p are the Lamé constants and the symbol #r refers to the trace. In addition, the stress-temperature tensor is
spherical and the conductivity is a constant
M=ml, x=kIL (3.11)

We can substitute (3.10) and (3.11); into (3.3) to obtain an expression for the stress tensor

S =A(tre)I +2ue+mI(0—-6,) (3.12)
Similarly, substituting (3.1); into (3.6), yields

—0,m(tre )+ pocoé =p,r—V.q,. (3.13)
The relations (2.7), (3.6),, (3.7) and (3.8) remain unchanged. Along with (3.12) and (3.13), they form a system of six
equations governing the motion of a linear thermoelastic homogeneous isotropic body.
Substituting (3.6), into (3.12) and (2.7), we find the displacement-temperature equation of motion

IV u+(A+ )V (V) +mV O+ pb = pyii, (3.14)
where v’is the Laplacian operator.
Similarly using (3.9), (3.13) and (3.11), yields the heat equation

0yC,0 = por +kV?0 +0,V . (3.15)
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/A+2 /
¢ = —'us C = i (ﬂ'uuap() >0)s
Po Po

Veu=V(Vau)-Vx(Vxu),

Letting

and using the Laplacian identity
(3.14) can be rewritten as

ch(V.u)—CZZVx(Vx u)+ﬂV9+b:ii'

Po

A+ A+2
A G_ |22
Po &) H
and remark that ¢,> c,.

Apply the div operator to (3.17) and recall the identity div (curl) =0; we find the following form

We note that

o,V = —L(mvze +poV.b)
Po

where the wave operator O, defined by

o, f=cVf—f (a=1,2) has been introduced.
Similarly, applying the curl operator to (3.14) and using the identity curl (grad) =0 yields
0,Vxu=-Vxb.

The temperature equation is found by applying the wave operator O, to the heat equation (3.15) along with (3.19)

2
m-0,

Po

ke;VV?0 _[ + pococfz]VZQ —kV*6+p,c,0 —mO,V.b+ Py, 7 =0.

Let us introduce the following notations

m?0, 2 ke} k
o = + pycoc; |, K= > K, = >
Po

and define the heat operator O, by
O, f =k~  (a=12).
Assuming no heat supply and a constant body force field, the temperature equation (3.21) takes the form

M[6] =0
where the operator 9t has been defined by

62
m= (szol_poco ?Oz}

4. Solution of Thermoelastic Dynamic Equations

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

We now seek the solution of the system of thermoelastic dynamic equations. We are guided by the Papkovitch
(1932)-Neuber (1934) approach originally developed to solve the equations of linear isothermal elasticity. The solution
is based on Helmholtz’s decomposition theorem into the gradient of a scalar potential (dilatation) plus the curl of a

vector potential (rotation).
We start from the displacement-temperature dynamic equation (3.14) which can be recast as
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Viu+

1-2v

V(V.u)+m[1V0J+p°b = &ii s M: ! 4.1)
H u U uoo1=-2v

where v is the usual Poisson’s ratio.
Substituting in (4.1) the Helmholtz’s decomposition for the displacement

u=Vop+Vxy (4.2)
where u is the displacement field, ¢ is a scalar potential and w is a vector potential with zero divergence, we find that
, 1 1 1 . ~
v [u+1_2V v¢j+m(#vej_—”(F—p0u), (F=p,b). (4.3)
Applying the div operator to (4.3)
1 1 1
V| Viau+——V¢ |+m| —V*0 |=——V.(F - p,ii
( - ¢j m(# j ” (F = pyii) (4.4)
and using (4.2) again, yields the expression
21-v) 1,) 1 ;
V? ( Y ¢j (#V 9]——,uV.(F—p,,u). (4.5)

We see from (4.5) that using Helmholtz’s decomposition resulted in the uncoupling of the deviatoric response (curl #)
from the volumetric response (div #) but the temperature and the deformation fields are still coupled.
A remedy to this problem is to apply the 9 operator to (4.5) and use (3.24) i.e.

2(1 1 ..
Vzgm{ l( 2V) 4 ;sm[v.(F = pyii) |- (4.6)
Define a vector quantity 4
1
h= ) 4.7
(u+ 1-2v J “.7)
Use (4.2) and the identity div (curl) =0, then
V=201 g2 (4.8)
1-2v
and by (4.6)
2(1 V) 1 )
V[ V.h] = VM =, % |= NWZ[V.(F—,D,,u)]. (4.9)
Use the identity
& (R.h) :R.V2h+2(V.h) (4.10)
where R is the vector position of a field point referred to the origin, then
(V.h)= %[W (Rh)-RV’h] (4.11)
and
VM[V.h] = %am[v“ (Rh)-RV*h]. (4.12)
Comparing (4.9) and (4.12), we find the expression
21-v), 1 1 .
vim —~Rh|=——M|RV*h|. 4.13
ey —imlee ) w1
Let /4 a scalar quantity be defined by
(21(1 zv) 6—R. h] (4.14)

then by (4.6) (see proof in Appendix 2)

Vim[a] :—%DJT[R.V“h] = ;SUII:R.W}. (4.15)
y7,



42 Ruimi / Thermoelastic dynamic solution using Helmholtz displacement potentials

Rearranging (4.14), the scalar potential is

1-2v 1
¢—2(1_V)(h+2R.hJ. (4.16)
Then
pGe=rl e L
h=|u+ Vo |=u+ V|ih+—Rh (4.17)
1-2v 2(1-v) 2
and
7 7
2,uu—th—VLl_v)hjLZ(I_V)R.h}. (4.18)
or
2yu:A—V{B+ # R.A}, A=2uh, =" (4.19)
41-v) 1-v)

We can apply the divergence operator to (4.9) and use V>A4=2uV>h , A = 2uh=2uii, with the definition on the wave
operator then A4 and B are related and satisfy the following equations
M[0,V?A4|=-2M[c;VF |
4
m[v*5]=m RV'A (4.20)
4(1-v)
Substitute (4.19) in Navier equations (4.1) and apply the Laplacian operator

2
Ly Lolylp# palls ! v (vva)+ v veyr Y E = p v (4.21)
2u 2u 4(1-v) 1-2v H H
Applying the 9t operator to (4.21) and using (4.20), yields the following expression
SDT[V“A}SD{—ZVZF+IZVZA}. (4.22)
G
Use the form of u (4.19) in (4.21),
1 1 m
—— MV A-2puu} +9M VH(V(Va))+ =MV *(VO) = M| pii 4.23

Uisng (4.22), this becomes

- Loy —2v2F+i2v2/'i +MV? | Viu+
2u ¢

V (V) +’Z(V0)} = M| pii] (4.24)

then by Navier equations (4.1)

—zlum[uzva]+mc§v2[pou—ﬂ=zmc§[p0u] (4.25)

or equivalently
M[0,V>A]|=-2Mc3V’F,

i.e. the solution of the thermoelastic dynamic problem for homogeneous isotropic linear bodies reduces to solving a sixth
order vector (wave) equation for the displacement field and a fourth order scalar equation for the temperature field (3.24).
If we let =0 in (3.24), the solution for u is identical to that of the isothermal elastodynamic case in Chandrasekharaiah
and Cowin (1990) obtained by generalizing the Navier equations of equilibrium. If we let ii=0 (via A) in (4.23), the
solution for u# becomes that of the static thermoelastic case in Chandrasekharaiah and Cowin (1989) and obtained from
the unified solutions of thermoelasticity and porosity. Letting both 6=0and it =0 (via A) in (4.23) yields the
Papkovitch-Neuber’s solution of the displacement field for the isothermal elastostatic case (Mindlin 1936-also in Sadd

2009).The relevant subcases are shown in Tablel and details of the derivations are in the Appendix.
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Table 1: Thermoelastic dynamic solution and subcases

Elastic

Thermoelastic

2uu=A-V| B+ RA
4(1-v)

where 4 and B are related and satisfy

Quu=A-V| B+ R4
4(1-v)

where 4 and B are related and satisfy

Statics ViAd=-2F ol[v“AJ - —2QI[V2FJ
R.F RV*A 2 4
V2B = =_ Ol[V4B]=Ol RV'F -0, RV~ A
2(0-v)  4d-v) 2(1-v) 4(1-v)
and the temperature satisfies
o,[v*e]=o.
where
O, f=kVf~f, a=12
ke; k
K] =—, KZ =
o PoCo
2uu=A-V| B+ RA 2uu=A-V| B+ " RA
4(1-v) 4(1-v
where A and B are related and satisfy | where 4 and B are related and satisfy
0,4=-2¢,’F M[0,V>A]=-29Mc3[VF|
Dynamics 5 RV’A
V’B=- . RV*A
4(1-v) M[V*B]=-

where
o,f=cVf—f, a=1.2
2 _ A+2p e 2o M

2

Po Po

1

41-v)

and the temperature satisfies

m[6] = 0.
where
2 o o= m’6, +p.cc’
M =| oV-O,—pyc, ?Oz ,0= Py PoCoC;
O, f=kVf-f,a=12
ke; k
Kl :7, KZ =
o Py
o,f=cVif—f, a=12
012=l+2'u, Cz_i

2

p(] p()




44 Ruimi / Thermoelastic dynamic solution using Helmholtz displacement potentials

Appendix 1
Case 1: Isothermal Elastic Dynamic Equations

In the isothermal case, the counterparts of (4.1) and (4.3) are

1 F _ p,.
v? V(Va)+— =i, (F=pb
u+1_2v ( u)+# ” i, (F=p,b)
. | | (1)
\Y% Vo |=——(F —p,ii).
(u+1_2v ¢j H( Pyit)

Define a vector quantity & as

1
h:(u+1_2vv¢j

21—
Vzh:—l(F—poii), V=20V gy
u 1-2v

then

Use identity
v’ (R.h) =RV’h+ 2(V.h)
where R is the position vector, then

(V.h) = ;[vz (R.h)—RV’h]

and

2| 2(1-v) 1 :_l 2
% [1—2v ¢ 2R.h} 2[R.v h].

Let /4 a scalar quantity be defined by

h:(z(l_v)¢—R.hj,
1-2v
then
1 1 F—-pi
Vi[h|=—=| RV*h|==| R.— =
[ 2[ ] 2( H }
and
¢ = 1-2v (h+1Rh)
2(1-v) 2
Thus,
1 1 1
h=|u+ V¢]:u+ V{h+R.h}
1-2v 2(1-v) 2
and
H H
2uu=2uh-V h+ R.h|.
p =< {(1—v) 2(1-v) }
Letting

A=2uh, B=* 4,
(1-v)
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the displacement field can be written as

2uu=A-V| B+ ! R.A .
4(1-v)

A=2uh=2plus— {h+lR.h}
2(1-v) 2

Use the expression of A in terms of A

then

A=oui=pii, Va2 h=—2uELRy - op e LG vep— Ky A g LRl
,Ll cz 1 1% l_V u

and A4 and B are related and satisfy the following equations

0,A= —2¢,°F
2
vip. RV'A
4(1-v)

If we substitute the form of # in the Navier equations, we find

Loa Lolvlpr 2 ralls L vwa)pr E=pi,
2u 2u 4(1-v) 1-2v H

then

F
V. —=p,l
2 ( u)+ . Dol

-0

A——v A{pou— }

1 1 - 1
a|:—2F+—2Ai|——V2{A 2,[1"}

G

i-Lv A+[V2u+
2,uc2 2u

By Navier equations, this is

2uc; 2u
or equivalently,
0,A=-2c}F,

i.e. the solution of the isothermal dynamic problem reduces to solving a second order (wave) vector equation.
Case 2: Static Thermoelastic Equations

In the static case, the counterparts of (4.1) and (4.5) are

1 m F
Vu+ VVu)+—VO+—=0, (F=pb
ut 5 VW P p (F =pb) )
vz(z(l )y ¢] (lvzajz—lv.F 3)
1-2v u U

and the heat equation is still valid
PyC,0 = pyr +kV?0+0,m(V. 1), (4)
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i.e. Helmholtz’s decomposition uncouples the deviatoric response (curl #) from the volumetric response (div #) in (3)
but the temperature and the deformation fields in (4) remain coupled.
In the static case, the counterpart of (4.1) (see 3.19) is

V*(V.u) = mV?0+V.F
( ) pocl ( )
and its time derivative is
1 . .
V*(V.i) =— mV*0+V.F).
( ) .Docl2 ( )

Assume no heat supply and a constant body force field and substitute the expression in (4) for (V. ;’4)

Vz(pocoé—kv29]:_ 1 . (mvzg)

0,m £oC,
This can be recast as

4 2 A kC,z mzeo 2
kV'0-V0=0, x=—, o= + P,CoC;
o Py
or using the heat operator,

o,[v’e]=o. (5)
Apply the heat operator to (3) and use (5)

2(1-v) 1
olv(l . v¢) ﬂ(V.F),

—zV

i.e. the volume change and temperature fields have been uncoupled but at the expense of involving higher derivatives.

then using Helmholtz’s decomposition

~ 1 201-v)
V.h—(V.qul_zVV.ngj - Vg

Define a vector quantity & by

and

V’0,(V.h) =V’ (o, 2-v) v2¢j =-0, (v-F)
1-2v y7,

(V’F) (6)
—

O,V'h=-0

Recall the identity
V? (R.h) =RV’h+ Z(V.h) ,
then
1
V’O,[V.h] =501[V4 (Rh)-RV'h]

and

s [2(1=v) 1 4
Ale (1 - th:—zol(R.V h).

Let a scalar quantity / be defined as

2A-v) ,
h = [1—2v P R.h),
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then

2
V“Olh:—lol(R.V“h) :lol[R.V F]
2 2 ya;

and

1 1
h—(u+1_2v V¢J—u+2(1_v)v(h+R.h).

Upon rearranging

u 7
2 =2uh-V h+ R.h
= Ll—v) 20-v) }

Letting

A=2uh, B=—Fp,
(I-v)

the displacement field can be expressed as

2uu :A—V{B+;R.A}

4(1-v)
Then
0,V*4=0,(2uV"h)
2
o,v'B=to0oVvh=-B o (RV'H) =~ rRYE
1-v 2(1-v) 2(1-v) 7,

so A and B are related and satisfy the following
0,V*4=-20,V*F
RV*A

oO,VB=-0,———,
! "41-v)

while the temperature field satisfies
o,[v*e]=o.
Substitute the form of # in Navier equations (2)
Lvg Lvlypr# ralls L vva+"ve+ Lo,
2u 2u 4(1-v) 1-2v U 7]

and apply successively the Laplacian and the heat operator

2
Lovia-Lovi v B+—~Rra|l+— o viu+Tovivey+o YL —o.
2u 2u 4(1-v) 1-2v u u

then

~ Lo v (A2 40— VU + 0, VA (V) =0
2u 1-2v U

—Zio,v“AwLo]V2 {V2u+

1 m
- 2vv(v.u)+;(v9)}_0

Appeling to Navier equations for the term in the paranthesis, we get

0,V'4=-20,V’F,
i.e. the solution of the thermoelastic static problem reduces to solving a sixth order vector equation for the displacement
field and a fourth order scalar (heat) equation for the temperature field (equation 5).
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Case 3: Isothermal Elastic Static Equations

For the isothermal case, the counterpart of (4.1) is

Vs V(V.u)+£=0
1-2v u
and following the same procedure as above, the form of # is found to be

2uu=A-V| B+ ! R.A
4(1-v)

where 4 and B are related and satisfy

V?A=-2F
VB = i
2(1-v)

Substitute the form of # in Navier equations

Lo Llvlv g  palls V(V.u)+£:0
2u 2u 4(1-v) 1-2v u
then
1
——VA-2uu! + V(Vau)=0
2V A2 oV (V)
—Lv2A+[v2u+ v(v.u)}o
2u -2v
1, F . .
——V A+| —— | =0 by Navier Equations
2u u
V’A=-2F
i.e. Navier equations reduce to solving a simple second order vector equation (Mindlin 1936-also in Sadd 2009).
Appendix 2
We show that
V2 (F - pyii
gm[v“hJ = _m{w}
u

Start with
V([ V.h] = -lfm[v. (F - pyii) |
u

and apply the del operator to both sides
V{VM[V.h]| = —v{ism[v. (F—poii)]}
M V(V*[V.h]}| = —sm{v{%[v. (F—poii)]}}
MV {V[V.h]}| = —zm{v{i[v. (F—poii)]}}.

Using the identity for the Laplacian

M{V*{Vx(Vxh)+Vhi| =—m{%[VX(VXF)+V2F—VX(VXpOﬁ)—V2(pOﬁ)]}



International Journal of Structural Changes In Solids, 4, (2012) 37-49 49

Use
1
h=|u+ Vo |,
1-2v

then

Vx(Vxh) =VX(VXH)+VX[VX1 12 Vrﬁj

-2v

If we assume that the displacement is irrotational, i.e. curl #=0 and use the identity curl(grad)=0, then

V x (V X h) =0
and

V{V*R[V.h|| = —v{%sm[v. (F —poii)]}

is verified.
If the requirement of irrotationality is too strict, we can use the Helmholtz’s decomposition of u, where v is arbitrary
and commonly chosen with zero divergence (Sadd 2009, page 266)

(Vxu)=(Vx(Vg+Vxy)) =(VxVe)+Vx(Vxy)=(Vy)V—-(V.V)y,
then
(Vxu)=(Vy)V=(VV)py=0-Vy.
If we assume
Vi =0, VxF =0,
then
(Vxu)=0, MV {V’hj| =M {V'h| = —W{M}
U
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