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Abstract

The notion of abstract bodies and their configurations in a three-dimensional Euclidean space as used in rational con-
tinuum mechanics is examined with a view towards assessing how well it reflects physical perspective, by considering
the traditional formulation of constitutive relations between the stress and the deformation gradient for homogeneous
compressible hyperelastic materials. It is found that the notion of deformation gradient tensor that is currently used
needs to be modified, the notion of material symmetry should be introduced in a different manner, and the traditional
formulation needs to be recast and extended.
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1. Introduction

Recently, Rajagopal and Srinivasa (Rajagopal and Srinivasa (2009)) have developed a completely Eulerian
framework to describe the response of elastic bodies that are not hyperelastic, without having recourse to
introducing the notion of deformation gradient. Such a formulation is demanded when one tries to describe the
response of biological matter that can grow or atrophy, which makes the notion of Lagrangian tracking from
a reference configuration other than the current configuration irrelevant. This paper is one in a series of the
recent papers by Rajagopal and co-workers (see Rajagopal (2003), Rajagopal (2007), Bustamante and Rajagopal
(2010)) that have greatly enlarged the scope of what one means by elastic bodies.

In this note, within a Lagrangian framework we examine the traditional construction of the general con-
stitutive relations for homogeneous compressible hyperelastic solids (Truesdell and Noll (2004)) with two main
objectives in mind: (i) We examine the notion of an abstract body or to be more precise, certain quantities
whose definitions rest with the abstract body or a reference configuration acting as its surrogate as introduced
from a mathematical standpoint, with regard to its aptness from a physical perspective, (see Rajagopal and Tao
(2008) where the need for the same is articulated). This is carried out by considering specifically the nature of
the deformation gradient tensor and the role it plays in the traditional development of constitutive theory. We
will show that the deformation gradient tensor has to be viewed differently and its invariance properties has to
be different if it is to be compatible with experimental measurements and tests. (ii) Once a new interpretation
for the deformation gradient is given, we discuss the necessity to reformulate and extend the traditional con-
struction, especially the specific stored energy, in order to make the results applicable to elastic solids other than
those that are isotropic and to make the results compatible with the principle of Galilean invariance (and also
compatible with the assumption of material frame-indifference, if one so desires).
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This work is motivated by the observation that one major aim of the traditional treatment is to provide a
constitutive relation for the stored energy in terms of the deformation gradient for hyperelastic materials. To
determine the specific form of the stored energy for a specific hyperelastic material, we usually need to carry out
experiments stretching/shearing samples of the material and measuring the deformations and the corresponding
tractions; then with the aid of the experimental data and on the basis of the model that we have in mind,
we need to carry out data reduction which usually reduces to finding the constants or material functions that
appear in the specific form for the model that we have chosen. As most of the experiments at our disposal are
one dimensional, or at best two dimensional in nature, we are reduced to curve-fitting in order to obtain the
constants. This procedure requires us to have quantities in the relation, especially the deformation, that are
experimentally measurable.

We need to point out that we use the treatment of Truesdell and Noll (2004) as the reference, instead of the
updated version of Noll (2006), due to the following considerations. From the viewpoint of testing, calibrating and
applying a constitutive model in engineering, it is preferable to deal with a set of variables that are amenable to
physical interpretations and measurements. For example, it is not straightforward to see the role of the principle
of Galilean invariance in the updated version, and such invariance requirement should be taken as an essential
element in the formulation of elasticity within the context of Newtonian mechanics. Though Noll (2006) has
reinterpreted the assumption of material frame-indifference, we will show that this assumption does not play a
critical role in the case of hyperelasticity. The main defect of the traditional development lies in its adoption
of an abstract body and peculiar status that is given to the reference configuration, which seems to lack sound
physical basis; as a result, the deformation gradient tensor is not defined in a physically sound way and the
material symmetry is not represented in a mathematically appropriate fashion to reflect what it means from the
physical standpoint.

Unlike Rajagopal and Srinivasa (2009), we adopt the notion of a special reference configuration which is
stress-free in this work. There are several reasons for this practice. A stress-free reference configuration offers
a convenient and straightforward way to characterize material symmetry possessed by a hyperelastic body,
especially in the case that the body is anisotropic.1 When an elastic body deforms, its material symmetry
changes; If the material symmetry of the body in its stress-free configuration is known (say, characterized by

certain unit vectors {N(i)} of symmetry together with the transformations {S} among the vectors), the material
symmetry of the elastic body in its stressed configuration is supposed to be completely determined by {N(i)}
and the modified deformation gradient. Therefore, the adoption of the special reference configuration and the
explicit presence of {N(i)} make it unnecessary to track the changes to the material symmetry. Furthermore, the
explicit presence of {N(i)} is essential for us to have a general constitutive relation for homogeneous compressible
hyperelastic solids, isotropic or not, when we use our definition of the modified deformation gradient and enforce
the principle of Galilean invariance, as will be shown below.

In the next section we will first summarize the procedure and the main results of the traditional treatment
and then examine the aptness and efficacy of the treatment from an experimental perspective. We conclude with
some remarks regarding our results in Section 3.

2. Basic analysis

Let B denote the abstract body, and let κ be a one-parameter (time) family of mappings of the abstract
body into a three-dimensional Euclidean space that we will call placers, and let κ(B) denote the configurations
occupied by the abstract body (see Fig. 1). The one-parameter family of placers essentially defines the motion
of the body, however we find it more convenient to introduce a one-to-one mapping χχχ that maps a reference
configuration of the body in time. That is, if X = κ0(P), P belonging to B, and x = κt(P) then we can define

1We have given a definition of material symmetry for hyperelastic solids in Rajagopal and Tao (2008). Also see Eq. (23) below
for the same.
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Figure 1: Abstract body, placer and configurations

a function:

x = χχχ
(
X, t

)
. (1)

We need to formulate the constitutive relation for the Cauchy stress tensor for elastic materials in order to
determine the motion χχχ of B under adequately given initial and boundary conditions.

2.1. Traditional development

To understand clearly the problems with the current formulation of constitutive equations for elastic bodies,
we summarize the results from the traditional development of compressible hyperelastic solids below Truesdell
and Noll (2004).

a. From the second law of thermodynamics, one can obtain

σij = ρFiI
∂ψ

∂FjI
. (2)

Here σσσ is the Cauchy stress tensor and ρ the mass density of B in the present configuration; F is the
deformation gradient tensor defined through

FiI :=
∂χi(X, t)

∂XI
, (3)

and

ψ = ψ̃(F, T ) (4)

is the specific stored energy and T is the absolute temperature. The dependence on T will be suppressed
from now on for the sake of brevity. One may also replace T with the specific entropy s.

b. One imposes the principle of material frame-indifference (FI), i.e., invariance under the mapping,

x∗ = x∗(X, t∗) = c(t) +Q(t)χχχ
(
X, t

)
, t∗ = t− a, (5)

where c(t) is an arbitrary vector function of time t, Q(t) an arbitrary orthonormal tensor which is a function
of t, and a an arbitrary constant. It has been assumed that the reference configuration is unaffected by the
change of frame, that is, there is no X∗ corresponding to X, the reference configuration acts as a surrogate
for the abstract body and is not viewed as a configuration occupied by the body at some time t, in which
case the points in it would be viewed differently by the observers in the two different frames. Under (5),
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the deformation gradient tensor transforms according to

F∗ = Q(t)F, (6)

and the specific stored energy obeys

ψ̃(F) = ψ̃(F∗) = ψ̃(Q(t)F) . (7)

With the help of the polar decomposition theorem, F = RU, and Q(t) = RT , one obtains from (7) that

ψ = ψ̃(U) = ψ̄(C) , C := UU = FTF. (8)

One implication of this result is that σσσT = σσσ.

c. Finally, if B possesses a certain material symmetry, that is, if S belongs to a specific subset of the set of
unimodular tensors, the form of the specific stored energy is further constrained by

ψ̃(F) = ψ̃(FS) , ψ̄(C) = ψ̄
(
STCS

)
. (9)

In the following, we will examine the above construction from the perspective of physical measurements.
Such an approach of examination is justified as an important aim of the construction above is to obtain a model
for the elastic behavior of real materials. To make the discussion easier, we consider the restrictions due to the
principle of Galilean invariance before discussing material symmetry possessed by the body.

2.2. Examination of the traditional development

From a physical perspective, it is not clear whether the transformation for the deformation gradient, Eq. (6),
can be justified, as a reference configuration has meaning only if the configuration of the body is in a three-
dimensional (physical) space; and if the abstract body is placed in a three-dimensional space by a “placer” at
some time, then each particle in the configuration will be accessible to observers associated with the frames.
Otherwise, the reference configuration is not really a configuration in the sense that it is a part of the three
dimensional space which forms a part of four dimensional space-time, and as such is just acting as a stand-in or
substitute for the abstract body. That all the configurations are observable is of paramount importance as one
cannot discuss correlation with experiments other than with regard to observations made with reference to some
frame of a body in some configuration that is observable.

Let κ0(B) denote a reference configuration of the abstract body. Truesdell makes the observation that a
reference configuration need not be associated with any specific configuration of the body. In this viewpoint the
reference configuration is treated as a surrogate for the abstract body and is not necessarily observable, though
one can use it to make mathematical manipulation. From both a philosophical and physical standpoint one is
hard pressed to make sense of this statement for obviously such a reference configuration has to be one that
could possibly be taken by the body; otherwise calling it a reference configuration will make no sense. More
importantly, one could equally make the choice of a configuration that was actually taken by the body as the
reference configuration, and one should then have comparison between how the deformation gradient observed
using such a configuration as the reference transforms and how the deformation gradient defined as it is done
in the traditional treatment transforms. In the usual parlance of rational continuum mechanics, if the reference
configuration is a configuration actually taken by the body, it is a relative deformation gradient, and this linear
transformation transforms in a manner different from that given by (6). It is this reference configuration that is
meaningful and such a measure is more than adequate to meaningfully define an elastic material.

Let κ0(B) represent the reference configuration of a physical body of our interest2. For the sake of simplicity,
we will assume that the body occupies κ0(B) at t = 0 and that κ0(B) is stress-free, the latter makes the description
of material symmetry easier to handle. Let the present configuration of the body be denoted by κt(B). We can

2One may view B as representing the physical body below, if one desires so.
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measure how much deformation the body undergoes from κ0(B) to κt(B). We can also use (1) to describe the
motion of the body,

x = χχχ(x0, t), χχχ(x0, 0) = x0. (10)

That is, X of (1) is identified as an element belonging to κ0(B) actually occupied by the physical body at, say,
t = 0. This identification is essential for the application of the constitutive relation (2) to a specific elastic
material, especially in determining, through experiments and data reduction, the constants contained in the
relation. On the basis of this observation, it is physically difficult to justify the assumption underlying (6)
that the reference configuration is unaffected by the change of frame or observer and difficult to understand the
relevance of the role of the notion of an abstract body other than through its association with the reference
configuration when it comes to the constitutive modeling of hyperelastic materials; Also, it is physically difficult
to understand why a deformation undergone by a body will make the present configuration observer-dependent
from the supposedly observer-independent reference configuration, even when the deformation is very small. The
position of a typical particle of the body is observer-dependent, both in κ0(B) and in κt(B), which is, under
Galilean transformation, related by

x0′ = b− ĉ t0 + Q̂ x0, x′ = b+ ĉ (t− t0) + Q̂ x, t′ = t− b, (11)

where b and ĉ are real constant vectors, t0 and b real constants, and Q̂ a constant proper orthonormal tensor.

We shall now introduce the Relative Deformation Gradient (Relative to the initial configuration)3. On the
basis of (10), we introduce the relative deformation gradient tensor

F̂iI :=
∂χi

(
x0, t

)
∂x0I

. (12)

It then follows from (11) and (12) that

F̂′ = Q̂ F̂ Q̂T , (13)

which means that the relative deformation gradient tensor transforms as a second order tensor under Galilean
transformation, in contrast to (6) of the traditional treatment. That the relative deformation gradient transforms
according to (13) is well known.

Like Eq. (2) in the traditional development, we can also obtain, from the second law of thermodynamics that

σij = ρF̂iI
∂φ

∂F̂jI

, φ = φ̃
(
F̂, . . .

)
. (14)

Besides the absolute temperature T or the specific entropy s, the unspecified quantities in φ̃ are supposedly
independent of time. To determine specifically what quantities they should be, we apply the principle of Galilean
invariance to get

φ̃
(
F̂, . . .

)
= φ̃

(
F̂′, . . .

)
= φ̃

(
Q̂F̂Q̂T , . . .

)
. (15)

There are two possible choices for the quantities as follows.

G1. If we adopt the form of

φ = φ̃
(
F̂
)
= φ̃

(
Q̂F̂Q̂T

)
, (16)

3We are aware that the relative deformation gradient is usually defined with the present configuration as the reference configuration
(Truesdell and Noll (2004)). To avoid confusion, we have here added ‘relative to the initial configuration’.



18 International Journal of Structural Changes in Solids, 4, (2012) 25-33

similar to (4) of the traditional development, we have the stored energy as an isotropic function of F̂. In
the case that the Cauchy stress tensor is symmetric, we can show (Rajagopal and Tao (2008))

φ = φ̄
(
Ĉ
)
, Ĉ := F̂T F̂. (17)

And consequently, (16) becomes

φ̄
(
Q̂ĈQ̂T

)
= φ̄

(
Ĉ
)
. (18)

That is, φ is an isotropic function of Ĉ, and thus, the resultant relation for the Cauchy stress tensor is
restricted to isotropic compressible hyperelastic solids. It implies that we should not take φ = φ̃(F̂) in
general.

The above conclusion also holds if a relation similar to (9) is adopted. To demonstrate this point, we
combine (9) and (16) to get

φ = φ̃
(
F̂
)
= φ̃

(
F̂S

)
= φ̃

(
Q̂F̂SQ̂T

)
, (19)

where S transforms supposedly as a second order tensor under Galilean transformation. In the case of a
symmetric Cauchy stress tensor, the relation reduces to

φ = φ̄
(
Ĉ
)
= φ̄

(
ST ĈS

)
= φ̄

(
Q̂ST ĈSQ̂T

)
(20)

Or under the transformation of Q̂ → (detS)Q̂S,

φ = φ̄
(
Ĉ
)
= φ̄

(
Q̂ĈQ̂T

)
(21)

which has the same form as (18).

G2. We need to provide information concerning the material symmetry of the body while prescribing the stored
energy so that we are not forced to consider only isotropic solids, as shown above. This can be done by
making the stored energy depend on a set of vectors, together with certain transformations among the
vectors that determine the material symmetry of the body; we will not include these transformations
explicitly here in the φ̃ of (14). Suppose that there exist preferred (unit) direction vectors of symmetry

N(k), k = 1, 2, 3, (in κ0(B)). These direction vectors transform according to N(k)′ = Q̂N(k), k = 1, 2, 3,
under Galilean transformation; and together with the appropriate transformations among themselves, they
can be employed as a basis to characterize the material symmetry of the body Rajagopal and Tao (2008).
Now, we modify (14)2 and use (15) to obtain

φ = φ̃
(
F̂,N(1),N(2),N(3)

)
= φ̃

(
Q̂F̂Q̂T , Q̂N(1), Q̂N(2), Q̂N(3)

)
. (22)

We may define the material symmetry set S for B through Rajagopal and Tao (2008)

φ̃
(
F̂,N(1),N(2),N(3)

)
= φ̃

(
F̂,SN(1), SN(2), SN(3)

)
, S ∈ S. (23)

Such a definition follows from the assumption that physically the body has the same mechanical response
when subject to the same relative deformation gradient F̂, while the set of directions {N(k)} is replaced
with the set of {SN(k)}. Such an operation may be realized experimentally by (i) deforming the body from

κ0(B) to the extent of F̂; (ii) rigidly rotating the stress-free reference configuration of the body such that

{N(k)} coincide with {SN(k)} and then deforming the rotated body to the extent of F̂. We will enlarge S
by including mirror symmetry, inversion symmetry, etc. which the body may possess.

Next, applying Galilean transformation and invariance to (23) and setting Q̂ = ST (under detS > 0), we
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have from (22) and (23)

φ = φ̃
(
F̂,N(1),N(2),N(3)

)
= φ̃

(
ST F̂S,N(1),N(2),N(3)

)
. (24)

This relation may be interpreted experimentally as (i) deforming the body from κ0(B) to κt(B) to the

extent of F̂; (ii) deforming the body from κ0(B) to the extent of ST F̂S. Both deformed have the same
amount of the stored energy.
In the case of σσσT = σσσ, we have from (22) and (24),

φ = φ̄
(
Ĉ,N(1),N(2),N(3)

)
= φ̄

(
Q̂ĈQ̂T , Q̂N(1), Q̂N(2), Q̂N(3)

)
(25)

and

φ = φ̄
(
Ĉ,N(1), N(2), N(3)

)
= φ̄

(
ST ĈS,N(1), N(2), N(3)

)
. (26)

We notice that the relation (26) seems similar to (9)2 of the traditional treatment, with the crucial differ-

ences that (i) Ĉ and C are defined on different grounds, one in terms of the relative deformation gradient
and the other based on the traditional notion of the deformation gradient, and (ii) the directions of material
symmetry are explicitly present in (26). More details concerning the consequences of (25) can be found in
Rajagopal and Tao (2008).
We should mention that Rajagopal and Srinivasa Rajagopal and Srinivasa (2009) have discussed the idea
of vectors of symmetry in an Eulerian framework. Here, we restrict our consideration of material symmetry
to the special case of hyperelasticity in a Lagrangian framework and the adopted set of direction vectors of
symmetry {N(k)} corresponds effectively to their tensor M. Our study allows the stored energy to depend
on the relative deformation gradient while the study of Rajagopal and Srinivasa Rajagopal and Srinivasa
(2009) does not even invoke the concept of deformation gradient or relative deformation gradient.

While replacing the traditional deformation gradient tensor with the relative deformation gradient tensor
that can be given physical interpretation and which can be experimentally measured and by employing Galilean
invariance, we have demonstrated that a set of vectors should be explicitly present in the representation of the
specific stored energy in order to have a general relation for σσσ beyond isotropic hyperelastic materials. Also, the
constraint of σσσT = σσσ should be imposed additionally.

2.3. Assumption of frame-indifference

In the current practice of rational continuum mechanics, the assumption of frame-indifference (FI) is viewed
as a principle. In view of this we shall consider briefly the implications of FI which is germane to our discussion.

Disregarding the controversy about the status of the assumption of material frame-indifference, we will
examine how to apply the assumption to the construction of compressible hyperelastic models, while incorporating
an experimentally measurable relative deformation gradient tensor like that defined in (12).

It follows from (5) and (10) that

x0∗ = c(0) +Q(0)x0, x∗ = c(t) +Q(t)χχχ
(
x0
k, t

)
, t∗ = t− a, (27)

where x0∗
i is the position of a typical particle of the body observed in the moving frame at t∗ = −a, corresponding

to x0
i observed in the inertial frame. The directions of symmetry N(k), k = 1, 2, 3, that appear in the stored

energy may be transformed according to

N(k)∗ = Q(0)N(k), k = 1, 2, 3. (28)

If we extend (12) to

F̆ ∗
iI :=

∂x∗i
∂x0∗I

, (29)
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we have from (27) and (29) that

F̆∗ = Q(t) F̆
(
Q(0)

)T
. (30)

Adopting

σ∗
ij = ρF̆ ∗

iI

∂Ψ

∂F̆ ∗
jI

, Ψ = Ψ̃
(
F̆, . . .

)
= Ψ̃

(
F̆∗, . . .

)
(31)

and the restrictions due to FI, we explore below the two cases on the forms of the specific stored energy, like
that discussed in Subsection 2.2.

F1. Consider

Ψ = Ψ̃
(
F̆
)
= Ψ̃

(
F̆∗) = Ψ̃

(
Q(t)F̆

(
Q(0)

)T)
, (32)

similar to (7) and (16). With the help of the polar decomposition theorem, F̆ = R̆Ŭ, Q(0) = 1 and

Q(t) = R̆T , the above relation reduces to

Ψ = Ψ̃
(
Ŭ
)
, (33)

which leads to

Ψ = Ψ̄
(
C̆
)
, C̆ := F̆T F̆, (34)

a form similar to (8). Eq. (34) has the same defect as that of (18) in virtue of

Ψ̄
(
Q(0)C̆

(
Q(0)

)T )
= Ψ̄

(
C̆
)

that follows from (32). There is, however, one crucial difference between (18) and (34) in that we have
imposed σσσT = σσσ explicitly in the derivation of the former but σσσT = σσσ is a consequence of FI in the latter.

F2. Consider

Ψ = Ψ̃
(
F̆,N(1),N(2),N(3)

)

= Ψ̃
(
Q(t)F̆

(
Q(0)

)T
,Q(0)N(1),Q(0)N(2),Q(0)N(3)

)
. (35)

The equation results in

Ψ = Ψ̃
(
Ŭ,N(1),N(2),N(3)

)

= Ψ̃
(
Q(0)Ŭ

(
Q(0)

)T
,Q(0)N(1),Q(0)N(2),Q(0)N(3)

)
. (36)

In the derivation of the second equality, we have used FI, F̆∗ = R̆∗Ŭ∗ and Ŭ∗ = Q(0)Ŭ
(
Q(0)

)T
from the

polar decomposition theorem. Furthermore, FI implies that

Ψ = Ψ̄
(
C̆,N(1),N(2),N(3)

)

= Ψ̄
(
Q(0)C̆

(
Q(0)

)T
,Q(0)N(1),Q(0)N(2),Q(0)N(3)

)
. (37)

That is, Ψ is an isotropic function of the tensor C̆ and vectors {N(k)} a result formally identical to that of
(25) from Galilean invariance.
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The above discussion has shown that the result of FI is restricted to isotropic hyperelastic solids, if the notion
of abstract body is replaced with quantities experimentally measurable and if the vectors of material symmetry
are not explicitly included in representing the specific stored energy. This result speaks to the inadequacy of the
revised formulation of hyperelasticity as proposed in Noll (2006).

3. Concluding remarks

Motivated by the observation that a constitutive model for the thermomechanical response of a material body
should be composed of physically measurable quantities (or quantities inferrable from measurable quantities) so
that one might corroborate and calibrate the model, we examine the role played by the notion of an abstract
body and its configurations in rational continuum mechanics. We re-examine the methodology of the traditional
formulation of the constitutive relation for homogeneous compressible hyperelastic materials.

We have shown that

1. The role of the traditional deformation gradient tensor should be replaced by that of the relative deformation
gradient so that one can define a meaningful experimental procedure to develop a constitutive relation for
the stored energy that can be experimentally corroborated.

2. The traditional treatment should be reformulated and extended to include explicitly the vectors that define
material symmetry or the like in order to have a general constitutive relation for homogeneous compressible
hyperelastic solids, isotropic or otherwise, when we use the relative deformation gradient and impose the
principle of Galilean invariance.

3. The revised version of hyperelasticity in Noll (2006) does not circumvent the problem that arises in the
traditional formulation of hyperelasticity.

More details and results concerning the formulation on hyperelasticity can be found in Rajagopal and Tao
(2008). It would be interesting to extend the above procedure to the general framework of elasticity and certain
formulations of viscoelasticity and elastoplasticity.
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