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Abstract 
 

Electrorheological materials are a class of smart materials which exhibit dramatic changes in mechanical properties (like 
shear modulus) due to strong applied external electric fields. In this paper forced harmonic vibration of a simply supported 
rectangular elastic plate with a rectangular ER patch with arbitrary size and location on the plate and a constraining layer on the patch 
is investigated. A dynamic model for the electric field-dependent frequency response of a rectangular plate and the ER patch and its 
constraining layer is developed. Hamilton’s principle and the classical thin plate theory are applied to derive a set of fully coupled 
dynamic equations of motion along with the associated general boundary conditions. The frequency response functions and the 
modal loss factors are subsequently determined. The effects of electric field intensity, patch size and patch location on the frequency 
response functions and modal loss factors are investigated in numerical results. This work represents a rigorous analytical solution 
for the problem of the ER patch which seems to be absent in the previous works. 
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1. Introduction 
 

Passive and active control are two ways of vibration suppression in engineering structures.  In passive control 
the material properties of the structure itself, such as damping and stiffness, are modified so as to change the structural 
response (Saravanos and Chamis 1992). However, the material properties of such structures are predetermined in their 
design or construction phase, which can be hardly adapted to unexpected environmental changes. In order to overcome 
this disadvantage, intelligent materials such as piezoelectric materials or electro-rheological materials (ERs) may be 
incorporated into conventional structures in order to adapt to the changes of the environment. The latter materials have 
recently gained increasing popularity, as their rheological properties can rapidly and reversibly be varied when 
subjected to an electrical field (Winslow 1949). In particular, adaptive structures utilizing tunable ERFs have the 
beneficial control capabilities of simultaneously changing the damping and stiffness of the system by application of an 
electric field, in addition to the other valuable features of low-energy loss and easy controllability by computers (Weiss 
1993). 

Numerous investigators have thoroughly studied the use of smart ERF-based structures for vibration control 
in various spheres of engineering. The most significant contributions relevant to the present study shall be briefly 
reviewed here. Early investigations of the ER material in the structural vibration control problems can be traced to 
Coulter and coworkers (1989), (See also Coulter 1993), who performed theoretical and experimental studies of flexural 
vibrations of ER fluid-based sandwich beams. They found a good qualitative agreement between their model and 
experimental results, and observed that both natural frequencies and loss factors increase with increases in electric field. 
Choi et al. (1992) experimentally studied the vibration characteristics of ERF-based cantilevered beams. Also many 
other researchers such as Yeh et al. (2004) have studied the natural frequencies of adaptive ER-based plates and beams 
by means of numerical methods such as Rayleigh-Ritz. A few researchers like Kung and Singh (1998) have investigated 
the effect of partially covered sandwich plates with viscoelastic cores in the same way. 

The above review indicates that while there exists a notable body of literature on free vibration characteristics 
of electrorheological fluid-based sandwich plates, rigorous analytical solutions for the vibrational response of such 
structures seems to be absent, especially in case of partially covered plates. The primary purpose of the current work is 
to fill this gap. Thus, in this paper, we use Hamilton’s principle and the classical thin plate theory to present a closed  
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          Figure 1. Problem geometry                                                                                          Figure 2. 1  and 2  regions 

 
form Fourier series solution for harmonic transverse vibration of a simply-supported rectangular plate with an ER patch. 
The proposed model is of noble interest basically due to its inherent value as a canonical problem in structural 
dynamics. It is also of practical value for vibration control engineers involved in development of reliable analytical 
and/or experimental tools for the design and analysis of ER-based plates or panels with optimal vibrational 
characteristics. As it was said, this solution has the capability of using a patch with arbitrary size and position on the 
base plate. 
 
2. Formulation 
 
2.1 Basic relations   
  The complete configuration of the sandwich rectangular plate consisting of a base plate (thickness h3), a 
constraining layer (thickness h1), and a tunable ER material core layer (thickness h2) is illustrated in Figure 1 and Figure 
2. The base and constraining layers are initially assumed to be undamped, cross-ply elastic composite laminates, with 
width a and length b. 
 It is assumed that there is no slipping between the elastic and ER layers. The transverse displacements, of 
every point on a cross-section of the plate, including the points under the patch, are assumed to be the same. 
Furthermore, there exists no normal stress in the ER layer as well as no transverse shear strains in the laminated layers 1 
and 3. The above kinematical assumptions imply that the total displacement components at a material point 
( , , )x y z within the upper and lower elastic laminates may be expressed as (see Figure 3):  
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Where iz ( 1,3i  ) is the transverse coordinate in the local coordinate system of the upper and lower layers positioned 

at their associated mid-planes, and ( , )iu x y  and ( , )iv x y  are the mid-plane deformations in the x  and y  directions, 

respectively.  Assuming linear strain-displacement relations, the strain components in the elastic cross-ply laminated 
layers can be expressed as  
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Where i 1,3.  Also, the transverse shear strain components in the ER fluid (layer 2), as illustrated in Figures. 3a and 
3b, are written as (Yeh and Chen 2004) 
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Figure 3. Geometrical constraints between 3 layers 
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Where 
1 3 1 3( ), ( ),x x y yl d u u l d v v        in which 1 2 3/ 2 / 2d h h h   . 

 
 

In addition, assuming a state of plane stress within the upper and lower cross-ply laminates (i.e., layers 1 and 3) entails 
that the stress components within the k-th orthotropic lamina in each elastic layer can be obtained from Hooke’s law as 
(Reddy 2003): 
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Where ( )iQ  (i=1,3) represent the reduced transformed elastic constants in each orthotropic lamina within the i-th layer 

which in the case of isotropic materials reduce to 
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Where 
iE  and i  are the corresponding Young modulus and Poisson ratio, respectively. Like most of the papers on the 

usage of ER materials in adaptive structures, this paper considers ER material as a viscoelastic material, and complex 
modulus is used to identify the shear properties of the material in harmonic oscillation. So the transverse shear stresses 
in the ER fluid are written as (Yeh and Chen 2004): 

 
(2) (2) (2) , xz xzG     

 
(2) (2) (2) ,yz yzG     (6) 

Where (2)G  is the viscoelastic shear modulus of the ER fluid layer. 
 
2.2 Equations of motion and boundary conditions   

In this subsection, Hamilton’s principle is employed to derive the governing equations of motion for the total 
system along with the associated edge boundary conditions in general form. Following the standard procedure, we shall 
extremize (make stationary) the time integral of the Lagrangian for the entire system in any arbitrarily time interval, i.e., 

   
2 2
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t t
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Where   denotes the first variation operator, W represents the work done by the external forces, and L , U , and T  
are the Lagrangian, total strain energy, and total kinetic energy of the sandwich plate, respectively.  Also, keeping in 
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mind the state of plane stress throughout the upper and lower laminates in addition to the absence of normal stresses in 
the ER core layer, the variation of the total strain energy can be written as 

    2
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where 
1 2,V V  and 

3V denote the three dimensional domains for the upper elastic layer 1, ER core layer 2, and lower 

elastic layer 3, respectively, 
1  signifies the two dimensional ( )a b surface of the base plate and 

2 3   stands for 

the patch area in the x-y plane (see Figure 2).  Also, the relevant stress resultants within the upper, lower and core 
layers, appearing in the above relations are defined as: 
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Where 
2z  is the transverse coordinate in the local coordinate system of the ER core layer positioned at its mid-plane.  

Next, having adopted the classical thin plate theory and neglecting the rotational inertia (in-plane components of the 
kinetics energy) of the elastic layers, the variation of the total kinetic energy of the sandwich plate can be written as: 
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Where i ( 1,2,3i  ) denotes the mass density in the i-th layer, and 3
2 2 2( /12)I h  is the mass moment of inertia of 

the ER fluid interlayer.  Also, when the sandwich plate is subjected to an external transverse distributed force, 
( , , )q x y t  the variation of the total work done by the external force W is given as 
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In which, q  is the portion of the force which acts on the patch area and q  is the portion of the force which acts on 

the rest of the elastic plate. 
Next, substitution of the strain-displacement relations (2) and (3) in (8) yields 
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Where the pertinent moment resultants in the above relation are defined as: 
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Similarly, substitution of the strain-displacement relations (3) in (10) and performing time integration by parts, yields  
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Now, employing (11), (12), and (14) into Hamilton’s principle (Eq. 7), and making use of the so-named gradient 
theorem, while taking advantage of the fundamental lemma of calculus of variations (Forsyth 1960) results into the 
general form of equations of motion for forced vibration of the ERF-based sandwich plate: 

in 1 : 
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where xn and yn are the projections of the outward unit vector n  on the edge boundary of the plate in the x  and y  

directions, respectively.  One should note that for any of the above boundary conditions either the essential or the 
corresponding natural conditions should be satisfied.  
Next, substitution of the strain-displacement (2) and (3) into the constitutive relations (4) and (6) and subsequent results 
into (9) and (13) leads to the expressions for the stress and moment resultants in terms of the displacement components 
as 
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where 1,3;i   and the rigidity constants appearing in the above relations are defined as 
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( , , ) (1, , )
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hi i i
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A B D z z Q dz


                   (18) 

in which the indices j and k can be 1, 2, or 6. One should notice that because the integrals in (9) and (13) are performed 

on each of the base or constraining layers separately, and iz  is considered with respect to each plate’s mid plane ( )i
jkB is 

zero when each of the base or constraining layer plates are symmetrical with respect to its pertaining mid plane (Yeh 
and Chen 2004). Ultimately, substitution of (17) into (15) leads to the final form of the displacement equations of 

motion. We can combine the equations on 1 and 2 domains by use of Heaviside function. For example, the first 

equation of motion (related to 1u ) reads: 

 
                
 
              
                    (19) 

 
where 

 1 1 2 2( , ) ( , ) ( , )H x y H x a y b H a x b y                                                                                      (20) 

In which ( , )H x y  is the Heaviside function and 1a  and 1b  denote the location and size of the patch, as it is depicted in 

Figure 2. 
 
2.3 Frequency response   
 At this point, the frequency response of the rectangular plate and the  patch is investigated. For the sake of 
simplicity, the straight edges of the plate at (0, )x a  and (0, )y b  are all assumed to be simply-supported. Thus, 

keeping the general boundary conditions (16) in view, one must consider the essential boundary conditions 
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   
           

                (21a) 

in addition to the natural boundary conditions: 
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As it was mentioned in section 2.1, the transverse displacement across the whole width of the sandwich plate is assumed 
to be the same, and it is independent of the thickness coordinate. This assumption is based on the use of classical thin 
plate theory for the base and constraining plate layers and the incompressibility of the core.   So displacement 
components 

iu , 
iv , and w , which identically satisfy all above essential and natural boundary conditions, may 

advantageously be expanded as double Fourier series in the form  
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                                                                                              (22)  

where ( ) ( )i
mnu t  , ( ) ( )i

mnv t  (i=1,3), and ( )mnw t  are unknown functions of time to be determined, and / m m a , / n n b . 

Substitution of equations (22) in the equations of motion and using the orthogonality of trigonometric functions yield 
five coupled ordinary differential equations in the time domain. Taking the Fourier transform of these five differential 
equations leads to the following matrix form: 

 mn mn mnZ q                (23) 

Where 

 

(1) (3) (1) (3)[ ( ), ( ), ( ), ( ), ( )]

[0 ,0 ,0 ,0 , ( )]

T
mn mn mn mn mn mn

T
mn mn

U U V V W

q

    





q

                  (24) 

In which ( )mnq   is the Fourier transform of the forcing function, and ( ) ( )i
mnU  , ( ) ( )i

mnV  and ( )mnW   are the Fourier 

transforms of the unknown displacement functions ( ) ( )i
mnu t , ( ) ( )i

mnv t  and ( )mnw t . Clearly, the unknown frequency functions 

in 
mn  can readily be determined from (23) in the form 1

mn mn mn
 Z q . Indeed the external force may have any kind of time 

dependence (and consequently ( )mnq   may have any kind of frequency dependence) but when one considers a unit 

impulse ( ( )t ) as the applied force at a point on the plate which is not located at a nodal line, the frequency response 

functions will show all of the natural frequencies with correct amplitude. 
To validate our solution we assumed the dimensions of the patch so as to reach to a fully covered sandwich plate, and 
we compared the natural frequencies with those of Hasheminejad and Maleki (2009). As it can be seen in table 1very 
good coincidence were found between the results in this case. 
 

Table 1. Comparison of natural frequencies of the fully covered sandwich plate with previous researches 
Mode number Reference  b/a=1 , E=0 b/a=4, E=3.5 

 
(1,1) 

Present study 13.1939 467.239 
Hasheminejad & Maleki 13.1925 467.2367 

 
(2,1) 

Present study 32.9849 145.651 
Hasheminejad & Maleki 32.98 145.6540 

 
 

3. Numerical results 
In order to investigate the effect of an ER path, and its size and location, on the natural frequencies and loss factors of 
an elastic plate we consider 12 cases (table 2). In all cases the base plate properties are: 1a m , 0.5b m , 

3 1h mm , 3
3 2700 /Kg m  ,   3 70E GPa .  Also the ER and constraining layer's thicknesses and material 

properties are constant in all cases, 2 3h mm , 
1 0.5h mm , 3

2 1700 /Kg m  , 3
3 2700 /Kg m   and 3 70E GPa . 

One should note that because the base and constraining layers are both isotropic and therefore symmetric with respect to 

their pertaining mid planes ( )i
jkB is zero. For example, 1

1

/2(1)
1 1/2

h

jk jkh
B z Q dz


   and because the constraining layer is 

isotropic, 
jkQ is independent of 

1z and hence (1) 0jkB  .   

The complex modulus for a typical ER fluid is given, for example, by Yalcintas and Coulter (1995) which is 
expressed as follows: 

 
(2) ( ) ( )G G E iG E                    (25) 
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Where 2( ) 50,000G E E   is the shear storage modulus, ( ) 2600 1700G E E    is the loss modulus, and E is the electric 

field strength in kV/mm. The patch size and location and the electric field intensity for all cases are given in table 2.  

In all cases impulse force is applied at the point 4 25
( , )
10 100

a b  and the displacement of the point 7 65
( , )
10 100

a b  is considered. 

One should note that the force and displacement positions mainly affect on the amplitude of the FRF’s.  
 Firstly we investigate the effect of a square patch in the center of a rectangular plate. Figures 4 and 5 show 
the frequency response functions and the modal loss factors of the plate without patch (case 1), a plate with a 10*10 cm2 
patch in the center (case 2) and a plate with a 20*20 cm2 patch in the center (case 3). The electric field intensity is 1 
Kv/mm in both cases. As it can be seen from figures, a decrease in natural frequencies is observed when a patch at the 
center of the plate with E=1 Kv/mm is used, and there will be more decrease in natural frequencies when the size of the 
patch is increased. Also, it can be seen that for the first vibration mode, modal loss factor decreases as the size of the 
patch increases, but for the second mode, increasing the size of the patch results in an increase in modal loss factor. For 
the other four modes, the modal loss factor of the plate with the smaller patch is more than that of the plate with the 
larger patch. 

Table 2. Different investigated cases 

Case 
No. 

a1 (cm) a2(cm) b1(cm) b2(cm) E (Kv/mm)  

1 _ _ _ _ _ 
 

2 45 55 20 30 1 
 

3 40 60 15 35 1 
 

4 45 55 20 30 3 
 

5 40 60 15 35 3 
 

6 45 55 5 45 3 
 

7 30 70 20 30 3 
 

8 90 100 40 50 3 
 

9 60 70 30 40 3 
 

10 80 100 30 50 3 
 

11 65 85 15 35 3 
 

12 46 54 0 50 3 
 

 

     Now, we increase the electric field intensity by 3 Kv/mm. Figure 6 shows that natural frequencies will 
increase when we apply a 10*10 cm2 patch in the center of the base plate, and there will be more increase when we 
apply a 20*20 patch. But this pattern changes after the first three natural frequencies, and other frequencies will 
decrease by applying the patch in the center of the plate. As it can be seen from Figure 7, modal loss factors generally 
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decrease when the electric field is increased to 3 Kv/mm, and the loss factor of the plate with smaller patch is less than 
that of the plate with larger patch in all modes except the fifth mode. 
To see the effect of the patch location, we consider cases 5, 10 and 11. From Figure 8 we see that the frequency 
response function of cases 5 and 11 are exactly the same, but there is a little decrease in natural frequencies of case 10 
with respect to these two cases. But the effect of the patch location is a little different when we use a 10*10 patch. 
Figure 10 shows the frequency response function of cases 4, 8 and 9. We can see that for a 10*10 patch, the location of 
the patch has more effect on the first two natural frequencies, than that of a 20*20 patch. As it can be seen in Figure 9, 
the modal loss factor of the cases 5 and 11 are the same for all mode numbers except the fifth mode. As it can be seen 
from Figure 11, the location of the patch becomes more effective when the patch size is decreased to 10*10 cm. 
 

 
                  Figure 4. Frequency response of cases 1, 2 and 3                                 Figure 5. Modal loss factor of cases 2 and 3 

 

 
                Figure 6. Frequency response of cases 1,  4 and 5                                           Figure 7. Modal loss factor of cases  4 and 5 

 

        
 Figure 8. Frequency response of cases 5, 11 and 10                                    Figure 9. Modal loss factor of cases 5, 11 and 10 
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                         Figure 10. Frequency response of cases 4, 8 and 9                                             Figure 11. Modal loss factor of cases 4, 8 and 9 

 
 

 
                   Figure 12. Frequency response of cases 5, 6, 7 and 12                                     Figure 13. Modal loss factor of cases 5, 6, 7 and 12 

 
As the last comparison we consider the frequency response function and the modal loss factors of cases 5, 6, 7 and 12. 
In these cases, we change the aspect ratio of the patch while the patch area remains constant. As it can be seen in Figure 
12 the frequency response function of cases 6 and 12 are almost the same. The first seven natural frequencies of case 5 
are higher than those of case7, but the rest of natural frequencies are the same for these two cases. The modal loss 
factors of cases 6 and 12 are different specially for the first, fifth and sixth mode numbers. Also, the modal loss factor of 
case 7 is above other cases except for the last two mode numbers. 
 
4. Conclusion  

Hamilton’s principle, based on Kirchhoff thin plate theory, in conjunction with the Fourier series method are 
employed to study the free vibration characteristics of a simply-supported rectangular plate with an electrorheological 
patch. Numerical results reveal the important effects of the electric field intensity patch size and patch location on the 
frequency response function, natural frequencies and modal loss factors of the plate. The most important observations 
are as follows: using an ER patch in lower electric fields (1 Kv/mm) results in a decrease in natural frequencies. This 
can be due to the increase in system's total mass. But when we amplify the electric field intensity by 3 Kv/mm, the first 
three natural frequencies increase and using a bigger patch results in higher natural frequencies (Figures 4 and 6). The 
modal loss factor of the sandwich plate generally decreases when higher electric fields are applied (Figures 5 and 7). 
When the electric field intensity is 1 Kv/mm applying a larger patch results in a decrease in loss factors (except for the 
second mode), but when the electric field intensity is increased to 3 Kv/mm applying a larger patch results in an 
increase in loss factors (except for the fifth mode). 
If we move the patch from the center of the base plate toward its corner the first two natural frequencies decrease, but 
when the size of the patch rises up, this change becomes less (Figures 8 and 10). When a larger patch is used moving it 
toward the corner of the base plate results in lower loss factors (Figure 9) but when a smaller patch is used this pattern 
changes (Figure 11). 
To investigate the effect of the patch aspect ratio, when its area remains constant, we consider cases 5, 6, 7, 12 and 
Figures 12 and 13. One can see that when we change the aspect ratio of the patch, the first five natural frequencies 
remain unchanged, but it will have significant effects on higher natural frequencies. The modal loss factor of the plate is 
higher when a square patch is applied at the center of the plate. 
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