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Abstract

The main focus of this contribution consists in the elaboration of a continuum modelling approach accounting for
dislocation-based quantities. Related deformation dependent history-variables are attached to individual material points
and, moreover, are extended by means of gradients thereof so that so-called weak non-localities are captured. These
gradients of internal variables may be further specified and in this regard are here reduced to particular representations
of dislocation density tensors. While in this work we will make use of the concept of a material isomorphism—similarly
present in the kinematic framework denoted as multiplicative decomposition—the approach itself can also be generalised,
for instance with application to micromorphic continua. Apart from the non-simple kinematic framework, special emphasis
is placed on the configurational mechanics perspective of the problem at hand. First, a variational strategy is discussed
in detail, whereby the underlying stored energy density is assumed as an isotropic function in terms of its arguments.
Later on, the configurational framework derived is compared with the configurational balance of linear momentum as
based on straightforward transformation relations of its standard spatial representation. As a result, similar forms of the
configurational Eshelby stresses are obtained for the two different approaches, and the related volume forces additionally
incorporate contributions related to the material’s hereogeneities and inhomogeneities.
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1. Introduction

Material design constitutes a continuously increasing field of multi-disciplinary research. The rapid develop-
ment of this engineering and material science area essentially rely on the elaboration and further development of
the various mechanical—and in general also chemical—properties of advanced materials at their several scales
of observation. In particular, it is the material’s microstructure—such as defects, dislocations, texture, and so
forth—and the evolution thereof that determine the overall properties of the material itself. Different approaches
to incorporate such inhomogeneities into field equations and constitutive equations have been proposed in the
literature; an overview is provided in the contributions by, for instance, Noll (1967), Capriz (1989), Šilhavý
(1997), and Epstein and Elżanowski (2007).

The description and incorporation of the material’s inhomogeneities is directly reflected by configurational
modelling approaches, which date back to the pioneering works of Eshelby; see the collected papers in Markenscoff
and Gupta (2006), and the reader is also referred to the monographs by Hanyga (1985), Maugin (1993), and

Dedicated to the occasion of the 75th birthday of Alan Wineman.
∗Corresponding author
Email address: andreas.menzel@udo.edu/andreas.menzel@solid.lth.se (A. Menzel)

 
 
 
 
 
INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS – Mechanics and Applications 
Volume 1, Number 1, December 2009, pp. 61-72 
 
 



62 Menzel et al. / International Journal of Structural Changes in Solids 1(2009)

Gurtin (2000a) for a survey. In general, the derivation of configurational balance relations can either be based
on variational strategies or on transformations of standard established balance equations. Reviews on the first
type of formulations are reviewed in, for example, Ogden (1997) or Podio-Guidugli (2001), while the latter one is
discussed in, for instance, Steinmann (2002b). Moreover, the transformation-based framework has been extended
towards gradient continua and micromorphic continua in Kirchner and Steinmann (2007) and Hirschberger et al.
(2007). Within the last decade, variational approaches have been developed for different fields of application in the
area of computational inelasticity; see Hackl (1997), Ortiz and Repetto (1999), Miehe (2002), and Carstensen
et al. (2002). The extension of such an incremental variational formulation to a configurational mechanics
framework has been suggested in Svendsen (2005).

In this contribution we make use of the introduction of a so-called material isomorphism as elaborated
by Noll (1967), Negahban and Wineman (1992), Bertram (1999), and Svendsen (1998). Extensions of this
nowadays classical framework towards a configurational mechanics setting are proposed in the contributions by
Epstein and Maugin (1990), and Epstein (2002), Maugin (2003), or—with emphasis on computational aspects
of a configurational small strain inelasticity formulation—by Menzel et al. (2004, 2005). In view of theoretical
investigations that in particular study the relation between configurational volume forces and the continuum
theory of dislocations, we additionally refer the reader to Steinmann (2002a) and Menzel and Steinmann (2005,
2007). Alternatively, one may include dislocation-related quantities as arguments into the stored energy function;
see Menzel and Steinmann (2000), Gurtin (2000b, 2002), Svendsen (2002), and Levkovitch and Svendsen (2006)
for an overview on different formulations in this regard. A general framework, as based on an incremental
variational formulation, is suggested in Svendsen et al. (2009), wherein the additional field variable is either
treated as a Mindlin-type variable or kinematically coupled in the spirit of a material isomorphism.

As mentioned above, we will make use of two different frameworks to derive configurational balance relations:
a variational approach and a transformation-based approach. Furthermore, the overall idea consists in elaborating
formulations that in a continuum framework reflect dislocation- and inelasticity phenomena. Accordingly, the
gradient of the material isomorphism is incorporated into the strain energy function in terms of a dislocation
density tensor. For reasons of conceptual simplicity, we will neglect any additional hardening effects. Before we
begin with reviewing some essential kinematic relations in section 2, some aspects of the Peach-Koehler force
as well as general transformations of divergence and curl operations, as present in common balance relations,
are briefly summarised. Based on this, section 3 discusses further constitutive restrictions in the framework
of hyper-elastic forms. As a key aspect of the continuum dislocation framework, a variational formulation is
developed in section 4, whereby the overall spatial motion of the body itself as well as the material isomorphism
are treated as field variables. With these two balance equations in hand, section 5 elaborates the two different
configurational approaches that as a result render identical flux terms, or rather Eshelby stresses, but different
source terms, or rather volume forces. Finally, the relation to the Peach-Koehler force is briefly discussed in
section 6.

1.1. A brief note on the Peach-Koehler force and the transformation of balance equations

The celebrated Peach-Koehler force, as introduced in Peach and Koehler (1950), has nowadays been applied
in various fields of solid mechanics. The particular form of this configurational force can be based on different
concepts and derivations. A classical example of this pseudo vector consists in its interpretation as the force
driving a single dislocation. In addition to the literature cited above, we here give reference to the early work
by Kröner (1958), where the Peach-Koehler force (df ) was derived from the principle of virtual displacements
(dξ). To be specific, the external (V ) and internal potential (W ) were related to the particular force of interest
via df · dξ = − [ dV + dW ]. Furthermore, let da = dξ × dl characterise the area element passed over by the line
element dl of the dislocation. With σ denoting the stresses acting on a ‘virtual’ cut along da, one concludes
that dV + dW +da ·σ · b = 0, wherein − b corresponds to an infinitesimal displacement vector. Straightforward
arguments of comparison then render

df = dl × [ σ · b ] (II.148)

and
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Die weitreichende Gültigkeit der Gl. (II.148) rührt daher, dass sie allein eine Folge des sehr allge-
meinen Prinzips der virtuellen Verrückungen ist. (Kröner, 1958, p. 86)

While these investigations were based on small deformation kinematics,

It is a tricky matter to correctly interpret calculations of forces acting when a dislocation moves
through a material. . . . For linear theory, the Peach-Koehler forces are among those considered, and
it is hard to know how to define these, for nonlinear theory. (Ericksen, 1998, p. 19,20)

From the conceptual point of view, one may especially rise the question, where to introduce the dislocation
itself—either in the so-called current or in a reference configuration. Apparently, the particular choice renders the
related driving force to be settled in the respective configuration as well. When making use of additional modelling
concepts, such as the introduction of a local material isomorphism, the dislocation-related incompatibility can
be referred to these local transformations so that neither the particular reference (material) configuration chosen
nor the current (spatial) configuration have to be incompatible. Nevertheless, these geometric aspects render
the standard form of the Piola identity—see, for example, Ciarlet (1988)—to be no longer valid when referred
to the material isomorphism mentioned. A rigorous derivation of these relations was already established in the
pioneering work by Noll (1967), where he stated that

The usual version of Cauchy’s equation of balance is very useful only when applied to bodies that are
homogeneous. For applications to materially uniform but inhomogeneous bodies, a new version of
Cauchy’s equations is much more suitable than the usual one. (Noll, 1967, p. 2)

By analogy with (Noll, 1967§15.) and in line with the investigations reported in Dassiso and Lindell (2001)
and G. de Saxcé (2001), we briefly review the implications of non-compatible transformations of standard bal-
ance equations. In other words, the effect of the incompatible part of the second-order tensor that transforms
a vectorial balance equation is discussed. In this context, consider the extension of the vectorial Helmholtz
decomposition of a vector field v to a second-order tensor field T , namely

v = ∇Ξ a + ∇t
Ξ × b + vc so that T = ∇Ξ a + ∇t

Ξ × B + T c , (1)

whereby vc and T c are constants. The incompatibility of both fields is directly related to the curl-terms ∇t
Ξ ×•

with Ξ denoting vectorial positions in space. Next, let T take the interpretation of a local isomorphism.
Apparently, the related Piola-identity ∇Ξ · cof(T ) = 0 is violated for ∇t

Ξ × B �= 0. In view of two second-
order tensors, say K and κ, that are Piola-related in terms of T via K = κ · cof(T ), we obtain non-standard
transformation relations for the divergence and curl-operation. Based on dξ = T ·dΞ , so that ∇Ξ • = [∇ξ • ] ·T ,
one ends up with

∇Ξ · K = κ · [∇Ξ · cof(T ) ] + det(T ) ∇ξ · κ ,

∇t
Ξ × (κ · T ) = κ · [∇t

Ξ × T ] + [∇t
ξ × κ ] · cof(T ) ,

(2)

which determines the transformation of flux terms as present in common balance relations.
With these rather general considerations—on the Peach-Koehler force and the format of transformations of

balance equations in terms of an incompatible local isomorphism—in hand, we next study the configurational
mechanics of an inelastic continuum. The particular formulation considered is based on the introduction of a
material isomorphism, which allows interpretation as an incompatible tensorial quantity. Its curl-term charac-
terises this incompatibility and is referred to a dislocation density tensor. As this physically motivated object is
introduced as an additional argument into the stored energy function, the balance of linear momentum relation
is directly influenced by the incompatible part of the material isomorphism. In a configurational mechanics
context, the Eshelby-type stresses as well as the related volume force take an extended form according to these
additional contributions.
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2. Basic kinematics

To set the stage and to introduce notation, this section briefly reviews basic kinematic relations essential
for the subsequent elaborations. The particular framework adopted is based on the introduction of a material
isomorphism, which can be related to what commonly is referred to as the multiplicative decomposition of the
deformation gradient; see figure 1 for a graphical illustration.

In this regard, consider a sufficiently smooth motion of a body B, which we introduce as x = ϕ(X , t) :
B0×T → Bt. The arguments of the mapping ϕ are referential positions of material particles, X ∈ B0, and time,
t. In addition to the motion gradient, F = ∇Xϕ with J = det(F ) > 0, the overall constitutive response of the
inelastic material considered is assumed to further depend on internal variables. Here, we adopt the concept of
a material isomorphism, so that the second-order tensor F p—with Jp = det(F p) > 0—reflects the local effects
of inelastic deformations. On the one hand, use of a kinematically directly coupled form of F p and F will be
made, namely F e = F · F−1

p so that Je = J J−1
p > 0. On the other hand, we are particularly interested in

introducing weakly non-local dislocation-related quantities as supplementary arguments into the stored energy.
Accordingly, gradients of F p are accounted for in terms of so-called dislocation density tensors. Due to the fact
that the motion ϕ is assumed to be compatible, one alternatively could set up a one-to-one formulation based
on gradients of F e. In this contribution, however, we restrict ourselves to an outline in terms of F p and consider
the curve-integral∫

Cp

dxp =
∮
C0

F p · dX =
∫
A0

∇t
X × F p · N dA0 =

∫
A0

Ap · N dA0 �= 0 , (3)

whereby use of Stoke’s theorem has been made, and N characterises a referential outward surface normal unit
vector. The two-point tensor Ap = ∇t

X × F p = −∇X F p : E represents the dislocation density tensor,
which, moreover, defines the continuum Burgers density vector bbur

p = Ap · N . In order to deal with a one-
point tensor, as commonly used in continuum dislocation theories, we apply a formal Piola transformation,
np dAp = cof(F p) ·N dA0 with np ·np = 1, which enables us to identify the one-point dislocation density tensor
sought, i.e.

Dp = Ap · cof(F−1
p ) . (4)

3. Hyper-elastic forms

The constitutive equations for the stress-type flux terms, occurring in the balance equations considered later
on, are here assumed to stem from the derivative of a potential—the stored energy function. In fact, the
introduction of such an energy potential turns out to be essential for the two different configurational approaches
discussed as this contribution proceeds.

As the material body is, in general, heterogeneous and inhomogeneous, we allow all arguments of the stored
energy—as well as explicitly the stored energy itself—to depend on the referential positions of particles. Its
density form then allows representation as

W (F , F p, Ap; X) (5)

Since F p is modelled in particular as an elastic material isomorphism, there exists a reduced form of the stored
energy such that

W = W̃ (F · F−1
p , Ap · cof(F−1

p ); X) = W̃ (F e, Dp; X) . (6)

This in turn implies a direct coupling of both deformation measures as shown in figure 1. Besides these basic
assumptions on the coupling of F and F p, the stored energy function is further restricted by the principle of
material frame-indifference and the material’s symmetry properties. In other words, the spatial action of the
orthogonal group on the arguments of W leaves the stored energy unchanged, i.e. W̃ (F e, Dp; X) = W̃ (q ·
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Figure 1: Basic kinematics: material isomorphism and its relation to the so-called multiplicative decomposition.

F e, Dp; X) for all qt = q−1. It is then obvious that the directional derivative with respect to qε = exp(ε w) · q
must vanish, i.e.

[ ∂F eW · F t
e ] : w = 0 ∀ w = −wt . (7)

Furthermore, we assume the material body of interest to be isotropic. As a consequence, the stored energy
remains invariant under the material action of the orthogonal group on its arguments, namely W̃ (F e, Dp; X) =
W̃ (F e · Q, Qt · Dp · Q; X) for all Qt = Q−1. Similar to eq. (7), the directional derivative—now based on
Qε = exp(ε W ) · Q—further constrains the stored energy,

[ F t
e · ∂F eW + Dt

p · ∂DpW − ∂DpW · Dt
p ] : W = 0 ∀ W = −W t . (8)

Practically speaking, eq. (7) and (8), together with adopting hyper-elastic stress forms, yield the Kirchhoff
stresses, respectively the combination of Mandel stresses and Mandel-type back-stresses, to be symmetric.

4. Incremental variational formulation

In this section, a variational approach is reviewed, wherein the underlying incremental potential accounts
for the material’s inhomogeneities and heterogeneities. To set the stage, use of the balance of entropy for the
isothermal and quasi static case will be made, based on which local field equations of interest can be derived. In
this regard, let D denote the dissipation rate density, whereas t and T p characterise the respective traction-type
quantities, so that∫

B0

Ẇ + D dV =
∫

∂B0

t · ϕ̇ + T p : Ḟ p dA . (9)

Note that any additional contributions stemming from further volume sources as well as terms related to, for
example, singular surfaces are, for conceptual simplicity but without loss of generality, not incorporated into (9).
Adopting standard notation, •̇ = ∂t•|X abbreviates the material time derivative. Since the particular deformation
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processes considered are dissipative in general, such as plastic slip respectively dislocation activation and motion,
the evolution in time of F p is derived from a rate potential

R = Ẇ + P with P (Ḟ p; X) (10)

being the corresponding dissipation potential. Next, we compute the variation of the bulk contribution, namely

δ

∫
B0

R dV =
∫
B0

∂Ḟ R : δḞ + ∂Ḟ p
R : δḞ p + ∂Ȧp

R : δȦp dV

=
∫

∂B0

t · δϕ̇ + T p : δḞ p dA ,

(11)

and make use of the identities

∂Ḟ R : δḞ = ∇X · [ δϕ̇ · ∂Ḟ R ] − [∇X · ∂Ḟ R ] · δϕ̇ ,

∂Ȧp
R : δȦp = −∇X ·

[
[ ∂Ȧp

R ]t × δḞ
t

p

]
+ ∇t

X × [ ∂Ȧp
R ] : δḞ p ,

(12)

with U × V = [ U · V t ] : E for U and V being second-order tensors. By application of the divergence theorem
one obtains∫

B0

[∇X · ∂Ḟ R ] · δϕ̇ −
[
∂Ḟ p

R + ∇t
X × [ ∂Ȧp

R ]
]

: δḞ p dV

+
∫

∂B0

[ t − ∂Ḟ R · N ] · δϕ̇ + [ T p − ∂Ȧp
R × N ] : δḞ p dA = 0 ,

(13)

wherein the notation U × v = [ U ⊗ v ] : E, for v being a vector, has been introduced. With these relations in
hand, eq. (13) can be further reduced to the local forms

∇X · ∂Ḟ R = 0 in B0 and t = ∂Ḟ R · N on ∂Bt
0 ,

∂Ḟ p
R + ∇t

X × [ ∂Ȧp
R ] = 0 in B0 and T p = ∂Ȧp

R × N on ∂BTp
0 .

(14)

In summary, these relations represent the primary result of the current approach at the rate level.
Next, emphasis is placed on the incremental form of the derived field equations. In this context, consider the

finite time interval Δt = tn+1 − tn ≥ 0 with respect to which the bulk contribution R is now integrated, to be
specific

w =

tn+1∫
tn

R dt = Wn+1 − Wn +

tn+1∫
tn

P dt . (15)

A straightforward method to numerically integrate P is provided by a simple Euler-forward approach, namely

tn+1∫
tn

P dt ≈ Δt P ([F p n+1 − F p n]/Δt; X) = p(F p n+1, Δt; X) , (16)

so that the incremental form of eq. (14) results in

∇X · ∂F n+1Wn+1 = 0 in B0

and t = ∂F n+1Wn+1 · N on ∂Bt
0 ,

(17)
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as well as

∂F p n+1Wn+1 + ∂F p n+1p + ∇t
X × [ ∂Ap n+1Wn+1 ] = 0 in B0

and T p = ∂Ap n+1Wn+1 × N on ∂BTp
0 .

(18)

Note that use of the relations ∂F n+1w = ∂F n+1Wn+1, ∂Ap n+1w = ∂Ap n+1Wn+1, and ∂F p n+1w = ∂Ap n+1Wn+1×N
has been made. In addition, it is obvious that ∂F w corresponds to the Piola stresses and, moreover, that (18)
represents the algorithmic evolution-field relation for F p.

5. Two configurational field formulations

The subsequent section constitutes the main body of this contribution: two different approaches to formu-
late configurational field and balance relations are discussed, namely a variational approach and an alternative
framework based on a transformation concept applied to standard balance relations.

5.1. Variational approach
In order to derive a configurational field formulation for the variational framework discussed, we first superpose

a compatible deformation-type mapping onto the referential arguments of the relevant scalar-valued functions,
and second evaluate the respective field relations for this mapping coinciding with the identity mapping; see figure
2 for a graphical illustration. In this context, let xλ = λ(X , t) : B0 ×T → Bλ be a sufficiently smooth mapping,
whereas L = ∇Xλ denotes the related motion-gradient-type two-point tensor together with Jλ = det(L) �= 0.
Accordingly, we next refer the incremental potential energy to the transformation in terms of λ so that

w = Jλ wλ(F · L−1, F p · L−1, Ap · cof(L−1), xλ) , (19)

compare eq. (4) in view of the Piola transformation of the dislocation density tensor. With these relations in
hand, the corresponding variation with respect to λ results in

δ

∫
Bλ

w dV =
∫
Bλ

wλ ∂LJλ : δL + Jλ ∂λwλ · δλ dV

+
∫
Bλ

Jλ

[
F t · ∂F ·L−1wλ + F t

p · ∂F p·L−1wλ

]
: δL−1 dV

+
∫
Bλ

Jλ

[
At

p · ∂Ap·cof(L−1)wλ

]
: δ cof(L−1) dV

=
∫

∂Bλ

T · δλ dA .

(20)

Furthermore, we make use of the relations ∂LJλ = cof(L), δL−1 = −L−1 ·δL ·L−1, and δ cof(L−1) = J−1
λ δLt−

J−1
λ [ L−t : δL ] Lt, which—together with λ coinciding with the identity mapping—enables us to rewrite eq. (20)

as ∫
B0

Σ : ∇X δλ + ∂Xw · δλ dV =
∫

∂B0

T · δλ dA , (21)

wherein

Σ = [ w − Ap : ∂Apw ] I − F t · ∂F w − F t
p · ∂F pw + [ ∂Apw ]t · Ap (22)

characterises the Eshelby stresses. In summary, these relations result in the following local form

∇X · Σ − ∂Xw = 0 in B0 and T = Σ · N on ∂BT
0 . (23)
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Figure 2: Configurations: illustration of the transformation relations between the referential and spatial configuration as well as the
additional configurational setting.

It is also interesting to note that eq. (22) and (23) can be particularised to reduced forms: on the one hand, F p

may represent a material uniformity so that ∇XF p vanishes and Σ boils down to a null Lagrangian. On the
other hand, the absence of any material heterogeneities eliminates the contribution of ∂Xw to the configurational
volume forces.

5.2. Transformation-based approach
Next, we place emphasis on what we call the transformation-based approach. To be specific, the standard

form of the balance equation (17)—for the quasi static case and in the absence of spatial volume forces—is
considered and transformed to the reference configuration via

−F t · [∇X · ∂F w ] = ∇X · Σ + B0 in B0 and T = Σ · N on ∂BT
0 , (24)

with the index n + 1 being omitted for notational simplicity. The remaining task consists in identifying Σ and
B0. Adopting established concepts, we first make use of the compatibility of the overall motion and identify

∇X · [ F t · ∂F w ] = ∂F w : ∇XF + F t · [∇X · ∂F w ] . (25)

The first term on the right hand side of eq. (25) can be rewritten by means of the relation

∇X · [ w I ] = ∂F w : ∇XF + ∂F pw : ∇XF p + ∂Apw : ∇XAp + ∂Xw (26)

so that assembling terms yields the well-known formal representation

−F t · [∇X · ∂F w ] = ∇X · [ w I − F t · ∂F w ]

− ∂F pw : ∇XF p − ∂Apw : ∇XAp − ∂Xw .
(27)

In order to obtain a flux term similar to the Eshelby stresses in eq. (22), we further exploit the possibility to
introduce the individual contributions to the balance equation of interest either as flux or as source terms. In
this regard, it turns out to be useful to consider the relation ∇XU t : V = V : ∇XU + 2 V : [∇XU : Iskw ],
whereby U and V are second-order tensors and Iskw = 1

2 E ·E denotes the skew-symmetric fourth-order identity
tensor.

On the one hand, we apply this decomposition to the source term that directly includes the gradient term of
F p, and which can be related to the dislocation density tensor, namely

∇XF t
p : ∂F pw = ∂F pw : ∇XF p + 2 ∂F pw : [∇XF p : Iskw ]

= ∂F pw : ∇XF p − [ ∂F pw ]t × At
p ,

(28)

compare Menzel and Steinmann (2007) and Menzel (2007). Moreover, the term on the left hand side of eq. (28)
allows to be reformulated via

∇X · [ F t
p · ∂F pw ] = ∇XF t

p : ∂F pw + F t
p · [∇X · ∂F pw ] = ∇XF t

p : ∂F pw . (29)
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Please note that the contribution ∇X ·∂F pw vanishes identically as we conclude from eq. (18) that ∇X ·∂F pw =
−∇X · [∇t

X × [ ∂Apw ] ] = 0. As a first intermediate result we note

− ∂Fpw : ∇XF p = −∇X · [ F t
p · ∂F pw ] − [ ∂F pw ]t × At

p . (30)

On the other hand, we next consider the last but one term on the right hand side of eq. (27) and conclude—by
analogy with eq. (26)—that the following relation holds

∇X ·
[
[ Ap : ∂Apw ] I

]
= Ap : ∇X [ ∂Apw ] + ∂Apw : ∇XAp . (31)

Similar to eq. (28) we, once more, make use of the decomposition of the gradient operation to further specify
the first term on the right hand side of eq. (31), namely

∇X [ ∂Apw ]t : Ap = Ap : ∇X [ ∂Apw ] + 2 Ap :
[
∇X [ ∂Apw ] : Iskw

]
. (32)

Note, to perform a last manipulation, that the left hand side of eq. (32) allows representation in terms of

∇X ·
[
[ ∂Apw ]t · Ap

]
= ∇X [ ∂Apw ]t : Ap + [ ∂Apw ]t · [∇X · Ap ]

= ∇X [ ∂Apw ]t : Ap

(33)

with ∇X · Ap = ∇X · [∇t
X × F p ] = 0. As a second intermediate result one observes

− ∂Apw : ∇XAp = ∇X ·
[
[ ∂Apw ]t · Ap − [ Ap : ∂Apw ] I

]
− 2 Ap :

[
∇X [ ∂Apw ] : Iskw

]
.

(34)

Before collecting terms and identifying the Eshelby stresses and related volume forces, we lastly place emphasis
on the sum of the last expression of eq. (30) and eq. (34), to be specific

− [ ∂F pw ]t × At
p − 2 Ap :

[
∇X [ ∂Apw ] : Iskw

]
= −

[
[ ∂F pw ]t · Ap

]
: E + Ap :

[
[∇t

X × [ ∂Apw ] ] · E
]

=
[
At

p · [ ∂F pw −∇t
X × [ ∂Apw ] ]

]
: E

= 2 [ At
p · ∂F pw ] : E = − 2 [ ∂Fpw ]t × At

p ,

(35)

wherein use of the field equation (18) has been made.
With these tedious derivations in hand—namely eq. (27), (30), and (34)—we finally are able to identify the

Eshelby stresses and volume forces introduced in eq. (24), i.e.

Σ = [ w − Ap : ∂Apw ] I − F t · ∂F w − F t
p · ∂F pw + [ ∂Apw ]t · Ap ,

B0 = − ∂Xw − 2 [ ∂F pw ]t × At
p .

(36)

Note that the manipulations above have been carried out in order to obtain identical representation for the
Eshelby stresses based on the variational approach, eq. (22), and the transformation-based approach, eq. (36).
The volume forces in the respective formulations, however, do not coincide, which underlines the fundamental
difference of the two approaches.

6. Discussion

As a result of the previous derivations, two different versions of the configurational balance of linear momen-
tum representation have been derived. On the one hand, a variational approach has been applied, while, on
the other hand, use of what we call a transformation-based approach was made. In general, the overall form
of a balance equation allows to shift individual contributions form the flux terms to the source terms and vice
versa. In this contribution, such manipulations have been applied to the transformation of the standard spatial
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balance of linear momentum representation, in order to obtain an identical form for the flux terms—or rather
Eshelby stresses—compared to the variational framework. It is interesting to note, that the highlighted version
of the Eshelby stresses includes contributions directly determined by the material isomorphism F p as well as
parts defined in terms of the related dislocation density tensor Ap. The formally identical representations for the
Eshelby stresses derived by means of the variational approach and the transformation-based approach, finally
enabled us to compare both formulations. It turned out that different source terms—or rather configurational
volume forces—are obtained. In this regard, it is interesting to further discuss the particular contribution that
B0 in eq. (36) additionally includes as compared to the source term in eq. (23). In order to specify this contri-
bution and to relate it to the celebrated Peach-Koehler force, consider a single dislocation with Ap = Δ bbur

p ⊗ l,
wherein Δ denotes the Dirac delta contribution, bbur

p is the related Burgers vector, and l characterises the tangent
vector with respect to the dislocation line. Based on this specification, the additional contribution to B0, i.e.
− [ ∂F pw ]t × At

p with the factor 2 being omitted, can be related to the referential Peach-Koehler force, namely

f = −
∫
V0

Δ [ ∂F pw ]t × [ l ⊗ bbur
p ] dV =

∫
L0

l ×
[
[ ∂F pw ]t · bbur

p

]
dL . (37)

It is interesting to note that eq. (37) recaptures the classical small strain format of the Peach-Koehler force as
highlighted in section 1.1, eq. (II.148).

Apart form this, the field relations derived in this contribution—i.e. eq. (17) and (18), as well as eq. (23)
and (24)—can be transformed to other configurations. The underlying general transformation relations for the
respective divergence and curl operations are provided in eq. (2), which hold for both, (i) compatible transforma-
tions, such as ∇X · cof(F ) = 0, respectively ∇t

X × cof(F ) = 0, as well as for (ii) incompatible transformations,
such as ∇X ·cof(F p) �= 0, respectively ∇t

X ×cof(F p) �= 0. From a computational point of view, it is of particular
interest to further investigate algorithmic aspects and simulation results of the different configurational balance
of linear momentum representations based on the three different forms of the flux and source terms determined
by eq. (22), (27), and (36).
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