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Abstract

In this paper, a model to capture the pure bending response of shape memory alloys
(SMA) beams/wires under superelastic conditions is constructed by combining thermo-
dynamics principles along with Preisach models. The model is formulated directly using
experimentally measurable quantities “bending moment and curvature” rather than eva-
luating the same from stress resultants by integration as commonly followed in literature.
Following Doraiswamy et al. Doraiswamy et al. (2011), the key idea here is in separating
the thermoelastic and the dissipative part of the hysteretic response with a Gibbs potential
based formulation and thermodynamic principles. The Preisach model is then employed in
capturing the dissipative part of the response. Such an approach can simultaneously include
both thermal and mechanical loading in the same framework and one can easily simulate
complex temperature dependent superelastic responses. The model results are compared
with experiments performed on SMA wires/beams at different temperatures as reported in
the literature for NiTi and CuZnAl material systems.

Keywords : Shape memory alloy (SMA), bending, superelastic effect, Preisach model, design,
bending moment, curvature

1 Introduction

Shape memory alloys (SMA) are a sub-group of adaptive materials whose functionalities
arise from their underlying microstructural changes when subjected to changes in exter-
nal non-mechanical stimuli like temperature, magnetic field etc. Wayman (1992). In thermally
responsive SMAs, the reversible solid-solid phase transformations between a stable high tem-
perature austenitic phase and low temperature martensitic phase are responsible for them
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to demonstrate interesting phenomenon like shape memory effect (SME) and superelasticity
(SE) Lagoudas (2008). The use of such materials with combined sensing and actuation capa-
bilities have enabled them to replace multicomponent systems to achieve the same desired
functionality Ghosh et al. (2013). These unique characteristics of SME and SE have made
SMAs find applications in sensing and control, vibration damping, biomedical, automotive
and aerospace areas Song et al. (2006), Van Humbeeck (1999), Stoeckel (1990), Hartl and
Lagoudas (2007).

SMAs are commonly used in the form of wires, springs, strips, sheets, tubings or bars
under different loading conditions (tension, torsion or bending) for exploiting their unique
characteristics in many practical applications Lagoudas (2008), Miyazaki and Otsuka (1989),
NDC (2012). Due to SMA’s excellent biocompatibility and corrosion resistance properties,
the medical community in particular has found many applications for SMA in the form of
self-expanding stents, spacers, guide-wires, atrial occlusion devices etc. Machado and Savi
(2003), Morgan (2004), Bogue (2009). In many of these applications, SMAs are used under
bending mode and thus efforts in understanding “force v/s deflection” responses has been
of keen interest with the medical community. Experimental results for force v/s mid-span
deflection for a 3-point bend test conducted on wires and slender beams have been reported
widely by the biomedical community (see results in Brantley et al. (1978), Lopez et al. (1979),
Drake et al. (1982), Goldberg et al. (1983), Asgharnia and Brantley (1986), Miura et al. (1986),
Walia et al. (1988), Khier et al. (1991), Tonner and Waters (1994), Oltjen et al. (1997), Nakano
et al. (1999), Wilkinson et al. (2002), Parvizi and Rock (2003), Garrec and Jordan (2004), Sakima
et al. (2006), Bartzela et al. (2007)).

Based on these experimental evidences, researchers have suggested that due to SMAs
superior spring-back properties, their ability to recover large deformations have potentially
made them better alternatives compared to other material systems like stainless steel, β-Ti or
Co-Cr for medical applications Drake et al. (1982), Miura et al. (1986), Kapila and Sachdeva
(1989). Considering that most of the available experimental results are using 3-point bend
tests, Berg Berg (1995), Rejzner et al.Rejzner et al. (2002) conducted experiments for a case of
pure bending v/s curvature using custom designed experimental rigs. Wick et al. Wick et al.
(1995) have also reported experimental results by comparing responses for 3-point bending,
pure bending and tension loading cases (see figure 4 in Wick et al. (1995)).

In many of these applications, SMA components undergo repeated loading-unloading
cycles and hence capturing their complex hysteretic responses is critical. Considering the
importance of predicting the bending response with its associated hysteresis, some efforts
towards modeling their complex response were undertaken.

Rejzner et al. Rejzner et al. (2002) used the model developed by Raniecki et al. (Raniecki
et al. (2001)) to solve rate-type kinetic equations that takes into account tension-compression
asymmetry along with a non-linear differential equation describing neutral plane motion for
a symmetric cross-section. Marfia et al. Marfia et al. (2003) analysed a case of laminated SMA
beams based on small-deformation Euler-Bernoulli theory. They explored a “mixture rule type
approach” to determine martensite volume fractions and also established evolution equations
for martensite and austentite phase production Marfia et al. (2003). They extend this approach
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with Timoshenko theory to account for transverse shear and a layerwise approach which
assumes constant shear deformation in beam cross-section. Axial force, bending moment and
shear forces are derived as integrals of corresponding stress resultant expressions Marfia et al.
(2003).

Atanacković and Achenbach Atanacković and Achenbach (1989), Eshghinejad and Elahi-
nia Eshghinejad and Elahinia (2011) use an approach of dividing the phase transformation
event into 3 different regions (elastic austentitc zone, a phase-transition region and an outer
martensitic zone). Explicit relationships for bending moment are established upon integra-
tion of stress resultant expressions under loading and unloading events Atanacković and
Achenbach (1989), Eshghinejad and Elahinia (2011).

Mirzaeifar et al. Mirzaeifar et al. (2012) in their recent work reduce the three dimensional
constitutive equations developed by Boyd and Lagoudas Boyd and Lagoudas (1996), Qidwai
and Lagoudas Qidwai and Lagoudas (2000) for a pure bending case. They consider two
different transformation functions to account for tension-compression asymmetry and these
constitutive relationships are reduced to appropriate forms to study SE effects Mirzaeifar et al.
(2012). Closed form expressions for bending moment and curvature are analyzed analytically
from these stress resultant expressions Mirzaeifar et al. (2012).

In all of the above mentioned approaches, expressions for bending moment are obtained
by integrating explicit stress resultant equations established (in many cases reducing complex
3-D constitutive equations for a special tension–compression 1-D case). However, for a case
of pure bending, as the wire/beam bends, the phase transformation front moves from the
outer fiber towards the neutral axis (parallel to neutral axis) Rajagopal and Srinivasa (2005).
As pointed out by Rao and Srinivasa Rao and Srinivasa (2013), the variation of the extent
of transformation across the cross-section is not smooth and cannot be determined by easily
integrating certain state variables in constitutive relations across the specimen cross sections
Rao and Srinivasa (2013). They can be possibly determined only if the prior deformation
history is known. Further, due to lack of full three-dimensional experimental data and tension-
compression asymmetry, the approach of deriving moment–curvature relationships from
stress resultants gets quite complicated. In addition, parameter identification in reduced 3-D
models gets cumbersome due to lack of 3-D experimental data which forces approximations
like the use of von-Mises equivalent stress approach for a 1-D reduction Rao and Srinivasa
(2013). Given the complex thermomechanical nature of SMA responses, it is hard to justify
the use of such von-Mises stress equivalent approaches as they have not performed well with
even classical material systems Rao and Srinivasa (2013), Doaré et al. (2011).

Auricchio and Sacco Auricchio and Sacco (2001) developed a thermomechanical model to
capture tension-bending superelastic response under small deformation theory assumptions
that plane sections remain plane in both unreformed and deformed configurations Auricchio
and Sacco (2001). However, axial forces and moments again are obtained from stress resultants
by integration.

Purohit and Bhattacharya Purohit and Bhattacharya (2002) developed a strain energy
relation that is a function of axial stretch, the average shear, and the curvature with the
assumption the the beam is purely elastic Purohit and Bhattacharya (2002). They further
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assume that the phase transformation front moves perpendicular and not parallel to the
neutral axis Purohit and Bhattacharya (2002). This is contrary to the physical intuition of
the way the transformation front moves across the cross-section (i.e parallel to neutral axis).
This point has been discussed in detail by Rajagopal and Srinivasa Rajagopal and Srinivasa
(2005) in their work where they develop finite deformation model for SMA beams. Rajagopal
and Srinivasa Rajagopal and Srinivasa (2005) in their work assume a form for Helmholtz
potential/unit mass with the assumption that the elastic constants of martensite and austenite
are the same and do not vary with temperature. However, experimental evidences (3-point
and pure bending experimental results) have illustrated that the superelastic responses are
sensitive to temperature fluctuations and thus resulting in force variations for the same
amount of deflection/curvature (see experimental results in Tonner and Waters (1994), Shaw
and Kyriakides (1995), Parvizi and Rock (2003), Sakima et al. (2006)).

In order to overcome complexities of tension-compression asymmetry and temperature
dependent SMA responses, a “simple mechanics of materials model for smart materials” ba-
sed on experimentally measurable quantities “bending moment and curvature” is constructed
by combining thermodynamics principles with Preisach models. Following the approach of
Doraiswamy et al., Doraiswamy et al. (2011) the thermoelastic and the dissipative part of the
hysteretic response are separated with a Gibbs potential based formulation and thermody-
namic principles. The Preisach model is then employed in capturing the dissipative part of
the response. Given the thermomechanical hysteretic nature of SMA response, pure elasticity
theories considering mechanical loading alone are insufficient to capture such complex res-
ponses Rajagopal and Srinivasa (2005). The advancement from the classical beam theory is
the inclusion of both thermal and mechanical loading in the same framework that can capture
complex thermomechanical responses (refer fig 10 in Doraiswamy et al. (2011) for illustra-
tions). Further, it is also capable of easily simulating both load and displacement controlled
experiments with no further modifications to either the Gibbs potential or the actual model
formulation. With minimum computations, one can capture stress and temperature driven
phase changes when compared to complications involved with an equivalent 3-D model
reduction to a special tension–compression case and further estimating bending moment
from them. In addition, a model that is capable of accurately predicting bending moment
v/s curvature response directly could facilitate designers greatly especially in designing SMA
devices under superelastic conditions for many engineering applications.

2 Organization of this Paper

The remaining sections of the paper are organized as follows : In section 3, a Gibbs po-
tential based model is developed to simulate superelastic response of SMA wires/beams in
order to obtain “thermodynamic driving force and the volume fraction of martensite”, by
separating the thermoelastic and the dissipative part of the hysteretic response using thermo-
dynamics principles. Further in section 4, details on employing a Preisach model to handle
the dissipative part of the superelastic response is discussed. In section 5 , parameter identi-
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fication for a given superelastic response is detailed. In section 6 , the simulation procedure
is detailed with some highlights on salient features of the developed model. Next in section
7, the model predictions are compared against pure bending experimental results on SMA
wires/beams obtained from Rejzner et al. (2002). Finally, in section 8, the highlights of this
work are summarized.

3 Model Development

Consider a wire/beam subjected to pure bending with an applied bending moment “M”
and its corresponding curvature denoted by “κ”. Both bending moment “M” and curvature
(κ) are experimentally determined.

3.1 The Gibbs Potential

A form for Gibbs potential per unit volume (inspired from Doraiswamy et al. (2011),
Rajagopal and Srinivasa (1999)) is assumed and it is composed of the following terms (refer
equation 3.1) :

1. a linear combination of the strain energy for the two phases,

2. an interaction term between the two phases,

3. a term related to the heat capacity difference between the two phases and

4. a term relating to the heat capacity of the austenite.

Specifically the Gibbs potential per unit reference volume is assumed to be of the form,

G =

1︷                      ︸︸                      ︷
−

(
αM2

2EmI
+

(1 − α)M2

2EaI

)
+

2︷     ︸︸     ︷
Bα(α − 1) +

3︷            ︸︸            ︷
(1 − α)(a + bθ)−

4︷         ︸︸         ︷
Cθ(1 − lnθ) (3.1)

where,
– α is the martensite volume fraction during phase transformation,
– M is the applied bending moment,
– Ea and Em are the austenitic and martensitic moduli,
– I = πd4

64 is the moment of inertia
– B, a and b are constants,
– θ is the temperature and
– C is the specific heat

The constant “B” represents the interaction energy between the austenite and martensite
phases while “b” is the entropy difference between the austenite and martensite phases
respectively (see equation 3.3 below). Constant “a” is the internal energy difference between
the austenite and martensite phases at 0K (see equation 3.5 below). The method to identify
the above parameters would be described later in section 5.
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3.2 Establishing Driving Force

From classical thermodynamics, the entropy is given by,

η = −
∂G
∂θ

= −C lnθ − (1 − α)b (3.2)

Using above,

η|(α=1) = −C lnθ
η|(α=0) = −C lnθ − b

}
=⇒ b = ∆η = η|(α=1)− η|(α=0) (3.3)

thus, b is the entropy difference between the austenite and martensite states.
The internal energy, ∃, is given by,

∃ = G − θ
∂G
∂θ

= −

(
αM2

2EmI
+

(1 − α)M2

2EaI

)
+ Bα(α − 1) + (1 − α)a − Cθ (3.4)

Using above,

∃a = ∃|(α=0,M=0,θ=0) = a
∃m = ∃|(α=1,M=0,θ=0) = 0

}
=⇒ a = ∃a − ∃m (3.5)

From the above, the parameter a is the internal energy difference between the two phases at
0 K.
From the Gibbs potential, the elastic part of the total curvature is given by,

κe = −
∂G
∂M

=
αM
EmI

+
(1 − α)M

EaI
(3.6)

Also, the Helmholtz potential ψ, is related to Gibbs potential G, by,

ψ = G −M
∂G
∂M

(3.7)

The difference between the rate of external working (Mκ̇) and the rate of change of the
Helmholtz potential keeping the temperature fixed (ψ̇|θ), must be equal to the macroscopic
inelastic power (Pinel).

In other words,

Pinel = Mκ̇ − ψ̇|θ (3.8)

Using equations 3.6, 3.7 in 3.8 and upon further simplification,

M(κ̇ − κ̇e) −
∂G
∂α
α̇ = Pinel (3.9)

From equation 3.9, it is observed that there are two contributions to the inelastic power,
one from the shape change that occurs due to phase transition (M(κ̇ − κ̇e)) and the other from



 
 
 

 International Journal of Structural Changes In Solids, 5, (2013) 1-26 

 

7 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

20

40

60

80

100

120

140

160

180

Curvature /mm

M
o

m
en

t 
N

m
m

 

 

Temperature : 303K

(a) Bending moment v/s curvature plot at 303K Rejz-
ner et al. (2002).
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Temperature : 303K

(b) Driving force – volume fraction plot

Figure 1 – Experimental bending moment v/s curvature data for NiTi wire is reduced to driving force–volume
fraction plot using thermodynamic principles by using equations 3.15 and 3.14. (experimental data obtained
from Rejzner et al. (2002).)

the energy difference between the two phases
(
−
∂G
∂α α̇

)
. The maximum transformational strain

(κmax in this case)can assumed to be of the order of 6%.

κ̇ − κ̇e = κmaxα̇⇒ κ − κe = κmaxα (3.10)

In the above equation note that, when α = 1, κ − κe = κmax and when α = 0, κ − κe = 0. Now
substituting equation 3.10 into 3.9 we get.(

Mκmax −
∂G
∂α

)
α̇ = Pinel (3.11)

It is now possible to identify the driving force for the phase transformation in the superelastic
response of the SMA wires/beams :

F = Mκmax −
∂G
∂α

=⇒ F α̇ = Pinel (3.12)

Pinel is the macroscopic inelastic power. The rate of dissipation, ξ, is the net macroscopic
inelastic work in a closed cycle of state. In order to satisfy second law of thermodynamics,
this quantity must be non-negative i.e,

ξ =

∮
Pinel dt ≥ 0 (3.13)



 
 
 
 

Rao / Thermodynamic Preisach approach to modeling bending of superelastic SMA wires 
 

 

8 

3.3 Driving Force & Volume Fraction Estimation using Experimental Data

Using equations 3.1 and 3.12, the driving force expression 1 can be established (given by
equation 3.14 below) :

F = Mκmax + M2
( 1
2EmI

−
1

2EaI

)
− B(2α − 1) + bθ + a (3.14)

From equation 3.14, it is evident that driving force is a function of bending moment (M), curva-
ture (κ) martensitic volume fraction (α), and temperature (θ). The variables bending moment,
curvature and temperature are nondimensionalised prior to proceeding with further deri-
vations. The nondimensionalised variables are : M∗ = M/Mmax, κ∗ = κ/κmax, θ∗ = θ/θmax.
Henceforth, for better readability, the ∗’s will be omitted from the nondimensionalised va-
riables.

The martensitic volume fraction evolution (α) given by equation 3.15 can be obtained
using expressions 3.6 and 3.10.

α =

κ −
M
EaI

M
EmI −

M
EaI

+ 1
(3.15)

Experimental results for one particular temperature case are chosen as reference for si-
mulation and establishment of driving force and volume fraction relationships. This can be
achieved using expressions 3.14 and 3.15, where each experimental data point from experi-
mental bending moment v/s curvature plot can be reduced to corresponding driving-force –
volume fraction plot as shown in figures 1 and 2 i.e (M, κ) to (F , α). It must be highlighted that
expressions 3.14 and 3.15 were a result of employing a thermodynamical framework typically
used in modeling phase transforming materials. Now unlike a conventional “plasticity-like”
approach where evolution equations for α̇ are established (see Boyd and Lagoudas (1996),
Qidwai and Lagoudas (2000), Mirzaeifar et al. (2012)), a discrete Preisach model is employed
in this case to capture changes in α. The phase transformations in SMA can be perceived
as switching events between two phases (austenite and martensite) and the use of Preisach
models is quite appropriate here as these were developed to capture hysteresis effects due
to “domain switching in magnetism” Rao and Srinivasa (2013). Further, such an approach
solely focuses on the hysteretic dissipative part of the response and not on the entire response.
Following Doraiswamy et al. Doraiswamy et al. (2011), theF–α relationships can be modeled
using the Preisach models.

1. Due to material heterogeneity and the assumption of phase transformation front being parallel to neutral
axis, one can assume moment of inertia Im and Ia for the two phases martensite and austenite respectively
in the model formulation for general cases. However, due to paucity of experimental data on pure bending
of SMA components (especially fully transformed cases), it hard to actually determine the individual values
of Im and Ia for model calibration. For simplicity, a common moment of inertia “I” estimated from the initial
referential configuration is employed for both the phases. If more experimental data is made available, then one
can consider Im and Ia in the model formulation and relate them to the volume fraction of martensite α especially
under fully transformed cases.
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Temperature : 308K

(a) Bending moment v/s curvature plot at 308K
Rejzner et al. (2002).
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Temperature : 308K

(b) Driving force – volume fraction plot

Figure 2 – Experimental bending moment v/s curvature data for CuZnAl beam is reduced to driving force–
volume fraction plot using thermodynamic principles by using equations 3.15 and 3.14. (experimental data
obtained from Rejzner et al. (2002).)

4 Preisach Model Development

The Preisach model was first introduced by F. Preisach in 1935 to study hysteresis in
magnetic materials. Mayergoyz Mayergoyz (2003) in his book “mathematical models of hys-
teresis” discusses the notion of substituting a smooth hysteresis curve with a series of steps
and each step is referred to as a “hysteron” and characterized by three characteristic parame-
ters namely the “On” condition, “Off” condition and “height of the step” Mayergoyz (1986).
The traditional Preisach models assembles series of basic hysteretic elements or hysterons
to simulate hysteresis either stress – strain Ortı́n (1992) or temperature – strain Ktena et al.
(2001), Bo and Lagoudas (1999) relationships directly.

Following Doraiswamy et al. Doraiswamy et al. (2011), in this approach, each hysteron
(see figure 3) behaves like a non-ideal switch that switches on when the load increases beyond
F f orward, giving an “output”, ∆α, and switches off at Fbackward. With the establishment of the
driving force and extent of transformation expressions (equations 3.14 and 3.15 respectively),
the thresholds for the hysteron are F f orward and Fbackward and the output being volume fraction.
With the use of large number of hysterons in series that turn on and off at different driving
force values, contribution of each hysteron to volume fractions can be obtained.

4.1 Algorithm for obtaining Preisach parameters

The algorithm employed by Doraiswamy et al. Doraiswamy et al. (2011) for obtaining
Preisach parameters is briefly summarized in appendix A for the sake of completeness. The
algorithm details the process by which the contribution of each hysteron is accumulated to
get the total volume fraction of martensite for a given driving force.
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∆αi

Fbackward Fforward

Figure 3 – Basic hysteretic element or hysteron used in the Preisach Model. Directions of allowed transforma-
tions are represented by the arrows on the hysteron Doraiswamy et al. (2011).

4.2 Preisach Triangle

Following Doraiswamy et al. Doraiswamy et al. (2011), the Preisach triangle (see chapter
1 Mayergoyz (2003)) is a geometric interpretation of arranging hysterons in a systematic way
allowing switch on and switch off of these elements. The hysterons are assigned F f orward and
Fbackward in a way such that the hysterons on any particular row have the same F f orward and
the hysterons on any column have the same Fbackward in the triangle. Further, the hysterons
with the lowest F f orward are positioned at the bottom row of the triangle, and the forward
threshold value increases up along the rows. Similarly, the hysterons with the lowest Fbackward

are positioned at the left end of the triangle, and the backward threshold values increase from
left to right.

Once theF f orward andFbackward values are assigned, the corresponding “output”, ∆α for each
hysteron are computed. Thus by assigning hysterons at specific positions on a Preisach tri-
angle, the three parameters F f orward, Fbackward and ∆α are automatically estimated. The number
of hysterons in a triangle of side n is n(n+1)

2 .
In order to evaluate ∆α for each hysteron, a system of equations are setup where each

equation corresponds to the sum of the outputs of all those hysterons that are switched on.
These are now equated to the volume fraction, α from the data (from figures 1(b) or 2(b))
corresponding to the driving force level. Since there are n(n+1)

2 hysterons, and only k
(
< n(n+1)

2

)
data points (depending on the experimental data), the least squares fit with the non-negativity
constraint for the outputs of the hysterons is computed using “lsqnonneg” package from
MATLAB R©. An example of assigning three parameters in a Preisach triangle of side 9 is
illustrated in appendix B for more clarity.

5 Parameter Identification

By combining thermodynamics principles and Preisach modeling techniques, the model
parameters can be separated into sets of parameters arising from the thermodynamical frame-
work and those from the Presiach models related to hysterons positioning. Section 4 discussed
the details of obtaining parameters F f orward, Fbackward and ∆α pertaining to Presiach triangle as
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represented in figure 3 by automatically assigning the hysterons at specific positions on the
triangle.

The method of obtaining parameters arising from the assumed form of Gibbs potential
(refer equation 3.1)from thermodynamical framework will be discussed below. The parame-
ters under consideration Ea, Em, B, a and b and their corresponding values used for simulation
and model predictions are reported in table 1. The parameters are determined keeping the
experimental data on pure bending of NiTi wire from Rejzner et al. Rejzner et al. (2002) as
reference.

– “Ea” and “Em” being the austenitic and martensitic elastic moduli can be estimated di-
rectly form the tension experimental data by finding the initial slopes of the superelastic
response.

– “B” is the coefficient of the interaction energy term related to the area of hysteresis (as
shown in Rajagopal and Srinivasa (1999)). Therefore parameter “B” is proportional to
the area of hysteresis under bending moment v/s curvature plot. A value for “B” is
chosen in order to obtain a good fit between the model and the experimental hysteresis.

– The computation of entropy difference “b” can justified by the comparing responses
at two different temperatures as shown below. If F1 is the driving force at torque M1

and temperature θ1 and F2 is the corresponding driving force at torque M2 and θ2

respectively.

F1 =
M2

1

2

( 1
EmI
−

1
EaI

)
+ a + bθ1 − B(2α − 1) + M1κmax (5.1)

F2 =
M2

2

2

( 1
EmI
−

1
EaI

)
+ a + bθ2 − B(2α − 1) + M2κmax (5.2)

F1 − F2 =
M2

1 −M2
2

2

( 1
EmI
−

1
EaI

)
+ b(θ1 − θ2) + (M1 −M2)κmax (5.3)

The driving force analogous to chemical potential (see Callen (1985)) does not change
with temperature and thereforeF1 -F2=0. Using this relation and further neglecting the
terms arising due to modulus differences, we get,

b = −
M1 −M2

θ1 − θ2
κmax, (5.4)

It can be seen that the value of “b” (from table 1) matches with the values available in
the literature for SMA (see Bo et al. (1999)).

– The parameter “a” serves as a datum for the driving force and is computed by setting
the driving force to be zero at the stress-free austenite phase i.e.,

F |α=0,M=0= a + bθ + B (5.5)
a = −bθ − B (5.6)
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Table 1 – Values of thermodynamical parameters employed for model verification for pure bending experi-
mental data of NiTi wire Rejzner et al. (2002)

Parameters Corresponding Values
Ea 45 GPa
Em 35 GPa
B -1.33 Nmm
a 44.3 Nmm
b -0.133 Nmm/K
θ1 323 K
θ2 303 K

6 Bending Moment vs Curvature - Simulations & Model Pre-
dictions

The algorithm described in appendix A is used to estimate the volume fractionα for a given
driving force F . The process of finding the original bending moment vs curvature using the
above algorithm is detailed below for specific experimental protocols (load and displacement
tests). Further, it must be highlighted that both load and displacement controlled experiments
(sections 6.1 and 6.2 below) can be captured with no further modifications to either the Gibbs
potential or the actual model formulation discussed thus far. For prediction of responses
considered here, a total of 11325 hysterons were used (i.e an equivalent of a Preisach triangle
with a side of 150). The model predictions can be tailored by controlling the size of Preisach
triangle for a smooth or a jagged response at the cost of computational time

6.1 Load (Moment) Controlled Protocol

If at time ti, M(i), κ(i) and θ(i) are assumed to be known then by using equation 3.15, α(i)
can be evaluated. In order to compute these variables at time ti+1, it is assumed that M(i+1) is
known. F (i + 1) can now be computed from equation 3.14 for a known α(i). Once F (i + 1) is
evaluated, the Preisach model is used to predict α(i+1). With α(i+1) and M(i+1) now known,
using equation 3.6 to find κe(i + 1) and hence κ(i + 1) from equation 3.10. Summarizing the
above we need to evaluate the equations below

α(n) =

n∑
i=0

α(n)
i (6.1a)

F
(n+1) = M(n+1) +

(
M(n+1)

)2
( 1
2EmI

−
1

2EaI

)
− B

(
2α(n)

− 1
)

+ bθ + a (6.1b)

κ(n+1) =
α(n)Mn+1

EmI
+

(
1 − α(n)

)
Mn+1

EaI
+ αn (6.1c)
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6.2 Displacement (Curvature) Controlled Protocol

If at time ti, M(i), κ(i) and θ(i) are known then by using equation 3.15 α(i) can be evaluated.
Here κ(i+1) is known and M(i+1) needs to be computed.F (i+1) is computed using equation
3.14. Now the equation 3.15 is used to express M in terms of κ and α. The Preisach model is
used again to find α(i+1) fromF (i+1). Once α(i+1) and κ(i+1) are evaluated, using equation
3.15, M(i+1) is evaluated. Summarizing the above we need to evaluate the equations below

α(n) =

n∑
i=0

α(n)
i (6.2a)

M(n+1) =
κ(n+1)

− α(n)

α(n)
(

1
EmI −

1
EaI

)
+ 1

EaI

(6.2b)

F
(n+1) = M(n+1) +

(
M(n+1)

)2
( 1
2EmI

−
1

2EaI

)
− B

(
2α(n)

− 1
)

+ bθ + a (6.2c)

6.3 Prediction at different temperatures

The volume fraction α and driving force F are estimated from the original bending
moment vs curvature experimental data for a given temperature say θ1. The prediction
of responses at different temperatures say θ2 or θ3 can be achieved by just “changing the
temperature term” during the reverse calculations of bending moment vs curvature data
from the F – α generated for temperature θ1. Thus the hysteron parameters have to be
estimated only once and they do not have to be recomputed for predictions at different
temperatures.

7 Results and Discussion

7.1 Simulations of NiTi SMA wire and CuZnAl SMA Beam response using
complete Bending Moment v/s Curvature data

Figure 4 shows the model simulation predictions as compared with experimental results
at 303K for NiTi wire. Figure 5 shows the model simulation results at 308K for CuZnAl beam
as compared with the corresponding experimental results. The model shows a good fit with
the experimental results and can estimate the hysteresis accurately for both NiTi and CuZnAl
material system. The close match of simulation results shows the power of Preisach model
since the Preisach parameters were chosen to fit the data. The jaggedness in the response is
due to employment of a discrete Preisach model in simulation. Experimental results for both
cases were obtained from Rejzner et al. (2002).
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Figure 4 – Model prediction for the superelastic response of NiTi SMA wire at 303K. Model prediction and
experimental results show a close match. The close match of simulation results shows the power of Preisach
model since the Preisach parameters were chosen to fit the data. Experimental results at 303K were obtained
from Rejzner et al. (2002).
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Figure 5 – Model prediction for the superelastic response of Cu-Zn-Al SMA beam tested at 308K showing a
good match. The jaggedness in the response is due to employment of a discrete Preisach model in simulation.
Experimental results at 308K were obtained from Rejzner et al. (2002).
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(a) Model prediction for 323K compared with the corresponding experimental
data at 323K
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(b) Model prediction for 303K comapred with corresponding experimental
results using the data at 323K as input. The average error for this case between
the model predictions and experimental results was ∼ 8%

Figure 6 – Prediction for responses at temperatures 323 and 303K for a NiTi Specimen using the hysterons
generated from 323K. It must be noted that the extent of transformation at 323K is different when compared to
that in case of 303K. The results for both temperatures were obtained from Rejzner et al. (2002) (details in section
7.2)
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(a) Model prediction for 298K using the input data at 318K
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(b) Model prediction for 308K using the input data at 318K

Figure 7 – Prediction for responses for a CuZnAl specimen at temperatures 298 and 308K using the hysterons
generated at 318K. It is observed from the reported experimental results at 318K and 308K that the specimen is
subjected to a finite bending moment even at zero curvature (see figure 7 in Rejzner et al. (2002)). This affects the
predictions as the observed elastic behaviour in CuZnAl case is much smaller when compared to NiTi case. This
can be observed in the predictions of 298K results where the elastic part of the response is over-predicted. The
average error for both cases between the model predictions and experimental results was ∼ 16%. The results for
both temperatures were obtained from Rejzner et al. (2002)
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7.2 Simulation of NiTi SMA wire response at different temperatures

Figures 6(a) and 6(b) shows the model prediction at temperatures 323K and 303K using
the hysterons generated with the 323K results as the data input. The hysteron parameters
in this current estimation do not have to recomputed to predict the response at different
temperatures. It is evident from the experimental results, that the higher the temperature
above A f , the lesser is the transformation from austentite to stress induced martensite (SIM)
and thus lesser is hysteresis area when compared against the same maximum curvature κ =
0.045 mm−1 as reported by Rejzner et al. Rejzner et al. (2002). The NiTi wires undergo only
a partial transformation from austenite to SIM at different temperatures above A f and thus
the “extent of transformation” at 323K is different when compared to that of 303K result.
The model predictions for different temperatures could match exactly if the superelastic
responses at different temperatures are compared for the “same extent of transformation”
for each temperature case. The model predictions at different temperatures would be over or
under estimated based on the choice of temperature that is used to generate the hysterons
for prediction. If one needs to predict the hysteresis exactly for a partially transformed case
then one would have to recompute the hysterons for the each temperature case as described
earlier in section 7.1.

7.3 Simulation of CuZnAl SMA beam response at different temperatures

Figures 7(a) and 7(b) shows the model prediction at temperatures 298K and 308K using
the hysterons generated with the 318K results as the data input. Again, the hysteron para-
meters for this estimation do not have to recomputed to predict the responses at different
temperatures. It is observed from the reported experimental results at 318K and 308K, that
the specimen is subjected to a finite bending moment even at zero curvature (see figure 7 in
Rejzner et al. (2002)). This affects the predictions as the observed elastic behaviour in CuZnAl
case is much smaller when compared to NiTi case. This can be observed in 298K predic-
tions, where the elastic part of the response is over-predicted. Further, the maximum applied
curvature was in the range of 0.027 to 0.03 mm−1 for different temperature trials reported by
Rejzner et al. Rejzner et al. (2002). This suggests that the “extent of transformation” is different
for each temperature case and hence resulting in over or under prediction of the hysteresis
based on the trial (318K experimental results in this case) chosen to generate the hysterons
for prediction of responses at other temperatures.

7.4 Average error estimation : Model prediction v/s Experimental results

It is evident that the model predictions do not exactly match the experimental results as
discussed with results in sections 7.2 and 7.3. Since, hysterons generated from one experi-
mental result are used as input data, an average error between the model prediction and
the corresponding experimental results were estimated for each case under the given test
conditions (see equation 7.1 below). The average errors were estimated using the trapezoidal
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integration rule (trapz command in MATLAB R©).

Average error =

√√√√∫
(Model value − experimental value)2 dx(∫

Experimental value
)2

dx
(7.1)

The average error is an estimate for that specific case as the model predictions could be
different depending on the hysterons calculated for predictions (i.e the choice of initial ex-
perimental data as input). The average error for each of model predictions discussed in this
work are highlighted in figures 6(b) and 7.

8 Conclusions

In this paper, a model is constructed to capture the pure bending response of shape
memory alloy beams/wires by combining thermodynamics principles along with Preisach
models. The model is constructed based on experimentally measurable quantities bending
moment and curvature, rather than solving for them from stress resultants upon integration
as commonly followed in the literature. The key idea here was in separating the thermoelastic
and the dissipative part of the hysteretic response with a two species Gibbs potential based
formulation and further employing a discrete Preisach model for capturing the hysteretic part
of the response. Such an approach can simultaneously include both thermal and mechanical
loading in a single modeling framework with the capability of simulating both load and
displacement controlled experiments. Further it allows for easy handling of temperature
variations observed in superelastic responses of SMA. The model results are compared against
experimental results reported in the literature on NiTi SMA wires and CuZnAl beams at
different temperatures. An average error between the model predictions and corresponding
experimental results were estimated for each case. The error estimation is specific for each
comparison case based on the test conditions and the experimental trial initially chosen for
model predictions or generation of hysterons. Prediction of bending moment v/s curvature
response of SMA beams and wires directly could greatly facilitate designers in designing
components for various engineering applications.
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Appendix

A Preisach Algorithm

The algorithm employed by Doraiswamy et al. Doraiswamy et al. (2011) for obtaining
Preisach parameters is briefly summarized below for the sake of completeness.
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b

Figure 8 – Preisach Triangle : A systematic way for assigning switch on and switch off of the hysterons. The
directions of loading (forward) and unloading (backward) sweeps are marked on the figure.

The state Si of the ‘i’-th hysteron can take on one of two values : 0 or ∆αi where ∆αi is the
volume fraction of martensite contributed by the ‘i’-th hysteron. At any stage, the extent of
transformation, i.e, the volume fraction of martensite evolved, is given by :

α =

n∑
i=1

Si (A.1)
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The state S(n)
i at time tn is known and hence the state at tn+1 is given by :

if S(n)
i = 0 & F (n+1) > Fi

f orward (A.2)

then S(n+1)
i = ∆αi (A.3)

if S(n)
i = ∆αi & F (n+1) < Fi

backward (A.4)

then S(n+1)
i = 0 (A.5)

else S(n+1)
i = S(n)

i (A.6)

At the end of this time step, the α(n+1) is then (as in A.1),

α(n+1) =

n∑
i=1

S(n+1)
i (A.7)

Thus, at the end of the time step tn+1, α(n+1) is known, givenF (n+1) and S(n)
i for all the hysterons.

For each hysteron, inelastic power δPi
inel is given by,

δPi
inel =F δα (A.8)

=(F − Fmean)δα + Fmeanδα (A.9)

where δα is

∆αi if F > F i
f orward or

−∆αi if F < F i
backward.

Therefore, the first term in equation A.9 is always positive and the second term is positive
or negative depending on δα. The dissipation in a closed cycle of state (i.e sum of δPi

inel over
all hysterons) will always be positive as the first term will be positive whereas the sum of
second term will be zero. Using the above algorithm, the three parameters F i

f orward , F i
backward

and ∆αi are computed for each hysteron and the driving forces (F i
f orward , F i

backward) assigned in
a systematic way as described in figure 8. This greatly simplifies the computation of ∆αi for
each of the hysterons.

B Preisach Triangle : Example

Following Doraiswamy Doraiswamy (2010), a Preisach triangle of side 9 having 45 unk-
nowns as shown in figure 9 is considered for illustration of automatically assigning the three
parameters F f orward, Fbackward and ∆α. If the points are assumed as shown below :
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Figure 9 – (i) : Preisach triangle - A systematic way for assigning switch on and switch off of the hysterons.
The directions of loading (forward) and unloading (backward) sweeps are marked on the figure. Sub figures
(ii), (iii), (iv) shows an example for sequencing of states in the Preisach triangle. The colored section shows the
hysterons that are switched on with the corresponding driving force enforcing the state at the top of the state.
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F =



0
...
F1
...
F2
...
F3
...


n×1

α =



0
...
α1
...
α2
...
α3
...


n×1

As shown in figure 9 (i), the first entry is assigned as 0 and none of the hysterons are switched
on. If a state (F 5

f ≤ F < F 6
f ) shown in figure 9 (ii) is assumed and if F 1 be the corresponding

driving force, then α1 is the evolved volume fraction a that state. The hysterons contributing
to α1 based on the highlighted area in figure 9 (ii) and the algorithm described earlier in
appendix A.

∆α1 = ∆α11 + ∆α21 + ∆α22 + ∆α31 + ∆α32 + ∆α33 + ∆α41 + ∆α42

+∆α43 + ∆α44 + ∆α51 + ∆α52 + ∆α53 + ∆α54 + ∆α55
(B.1)

where ∆αi j corresponds to the hysteron at the i-th row from bottom and j-th column from
the left. Similarly one can write equations for α2 and α3 corresponding to cases depicted in
figures 9 (iii) and 9 (iv) respectively. In order to evaluate ∆α for each hysteron, a system of
equations are setup, where each equation corresponds to sum of all outputs of those hysterons
that are switched on. The entire system can be expressed as follows Ax = B.

0 · · · 0
...

1 1 · · · 1 0 · · · 0
...

1 1 · · · 1 1


n×45︸                                    ︷︷                                    ︸

A



∆α11
...

∆α55
...

∆α99


45×1︸     ︷︷     ︸

x

=



0
...
α1
...
1


n×1︸ ︷︷ ︸

B

It is clear that there are n(n+1)
2 hysterons, and only k

(
< n(n+1)

2

)
data points (depending on the

experimental data) are available. In this example, the dimensions of A are k × 45 and with
k < n(n+1)

2 , it is not possible to inverse the relationship as x = A−1b. This problem is solved
using least squares technique.

minimize ‖ Ax − b ‖

subject to xi > 0 ∀ i = 1, · · · ,
n(n + 1)

2

(B.2)

The constrained least square problem is formulated as shown in equation B.2 with the non-
negativity constraint for the outputs of the hysterons computed using “lsqnonneg” package
from MATLAB R©.
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Wick, A., O. Vöhringer, and A. Pelton, 1995 : The bending behavior of niti. Journal de physique.
IV, 5 (8), C8–789.

Wilkinson, P., P. Dysart, J. Hood, and G. Herbison, 2002 : Load-deflection characteristics of su-
perelastic nickel-titanium orthodontic wires. American journal of orthodontics and dentofacial
orthopedics, 121 (5), 483–495.


	Introduction
	Organization of this Paper
	Model Development
	The Gibbs Potential
	Establishing Driving Force
	Driving Force & Volume Fraction Estimation using Experimental Data

	Preisach Model Development
	Algorithm for obtaining Preisach parameters
	Preisach Triangle

	Parameter Identification
	Bending Moment vs Curvature - Simulations & Model Predictions
	Load (Moment) Controlled Protocol
	Displacement (Curvature) Controlled Protocol
	Prediction at different temperatures

	Results and Discussion
	Simulations of NiTi SMA wire and CuZnAl SMA Beam response using complete Bending Moment v/s Curvature data
	Simulation of NiTi SMA wire response at different temperatures
	Simulation of CuZnAl SMA beam response at different temperatures
	Average error estimation : Model prediction v/s Experimental results

	Conclusions
	Acknowledgements
	Preisach Algorithm
	Preisach Triangle : Example

