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Abstract

The goal of this contribution is to extend the work of Govindjee and Mihalic (1996) on inverse form finding for isotropic hyperelastic
materials to the case of anisotropic hyperelastic materials formulated in the logarithmic strain space. A review of the pertinent theoretical
aspects is presented. This is followed by several detailed numerical examples which highlight key features of the algorithm.
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1. Introduction

A challenge in the design of functional parts is the determination of the initial, undeformed shape such that under a given
load a part will obtain the desired deformed shape. This is an inverse form finding problem and is posed as follows: given
the spatial configuration, i.e. the deformed shape and the mechanical loading, find the inverse deformation map that deter-
mines the material configuration, i.e. the undeformed shape. This problem is inverse to the standard (direct) elastostatic
analysis in which the undeformed shape is known and the deformed unknown. A numerical procedure for the determination
of the undeformed shape of a continuous body has been proposed in Govindjee and Mihalic (1996) and Govindjee and Mi-
halic (1998). Their work is restricted to isotropic compressible neo–Hookean and incompressible materials, respectively.
One result of their work is that the weak form of the inverse motion problem based on the Cauchy stress is more efficient
and straightforward as compared to the weak form based on the Eshelby stress (energy momentum tensor). The governing
equation underlying the numerical analysis of the inverse form finding problem is therefore, surprisingly, the common
weak form of the balance of momentum formulated in terms of the Cauchy stress tensor. However, the unconventional
issue is that all quantities are parameterized in the spatial coordinates. Later, Fachinotti et al. (2008) extended this method
to the case of anisotropic hyperelasticity for a St.Venant type material, i.e. a material characterized by a quadratic free
energy density in terms of the Green–Lagrange strain. The consideration of temperature changes in the undeformed and
deformed configuration has been inclued in Govindjee (1999) for orthotropic nonlinear elasticity and axisymmetry using a
St.Venant type material. An application has been developed in Koishi and Govindjee (2001) for the purpose of tire design.
In this contribution, we further extend the method originally proposed in Govindjee and Mihalic (1996) to anisotropic hy-
perelasticity that is based on logarithmic (Hencky) strains. The governing equation for the resulting finite element analysis
is the weak form of the balance of momentum formulated in terms of the deformed configuration using the Cauchy stress
tensor. The anisotropic free energy density is expressed as a quadratic function of the logarithmic strain and a constant
anisotropic stiffness tensor. The motivation for the use of the logarithmic strain space formulation is that it mimics the
small strain format and the corresponding fourth-order stiffness tensor is known for many symmetry classes of anisotropic
materials.
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Figure 1: Spatial motion.

The paper is organised as follows: in section 2, we briefly present the kinematics of the direct and the inverse problems.
Section 3 summarizes anisotropic elasticity in the logarithmic strain space. In section 4, we review the ordinary direct
problem to determine the deformed shape based on the knowledge of the undeformed shape. Section 5 presents the cor-
responding inverse problem that determines the undeformed shape based on knowledge of the deformed shape. The finite
element discretization of the direct and the inverse problem is described in section 6. In section 7, we present various
representative numerical examples for the inverse form finding in anisotropic hyperelasticity.

2. Kinematics of Geometrically Nonlinear Continuum Mechanics

To set the stage, we briefly recall the basic kinematic quantities of geometrically nonlinear continuum mechanics. Let B0

denote the material configuration (the undeformed shape) of a continuum body parameterized by material coordinates X
and Bt the corresponding spatial configuration (the deformed shape) parameterized by spatial coordinates x, as depicted in
Figure 1. In the direct problem, the material configuration is given and we seek to determine the (direct) deformation map
ϕ as

x = ϕ(X) : B0 −→ Bt. (1)

The corresponding linear tangent map or rather the (direct) deformation gradient together with its Jacobian determinant are
defined as

F = ∇Xϕ, J = detF . (2)

Here∇X denotes the gradient operator with respect to the material coordinates X . On the contrary, in the inverse problem,
the spatial configuration is given and we seek to determine the inverse deformation map Φ as

X = Φ(x) : Bt −→ B0. (3)

The corresponding linear tangent map or rather the inverse deformation gradient together with its Jacobian determinant are
given by

f = ∇xΦ, j = detf . (4)

Here ∇x denotes the gradient operator with respect to the spatial coordinates x. It follows immediately from the above
definitions that the inverse deformationmap denotes a (nonlinear)map inverse to the deformation map of the direct problem

Φ = ϕ−1. (5)

Thus the inverse and (direct) deformation gradients together with their Jacobian determinants are simply related through
an algebraic inversion

f = F−1, j = J−1. (6)
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3. Anisotropic Elasticity in Logarithmic Strain Space

In this section we mainly summarize the exposition in Miehe and Lambrecht (2001) to facilitate the subsequant presenta-
tion. A valid model option for anisotropic finite strain hyperelasticity is a quadratic free energy density per unit volume in
B0

ψ0 = ψ0(E) =
1
2
E : � : E (7)

in terms of the second-order logarithmic strain tensor

E =
1
2

ln C (8)

and a constant anisotropic fourth-order stiffness tensor

� = EIJKLEI ⊗ EJ ⊗ EK ⊗ EL = E0
MNOP E0

M ⊗ E0
N ⊗ E0

O ⊗ E0
P . (9)

Here E0
MNOP denote the (known) coefficients of the anisotropic stiffness tensor in a coordinate system intrinsic to the

material with orthonormal base vectors E0
M . These in turn are given by a forward rotation from the base vectors EM of

the laboratory coordinate system

E0
M = Q ·EM = QIMEI , with Q = QIJEI ⊗ EJ ∈ SO(3). (10)

As a consequence the coefficients of the anisotropic stiffness tensor in the laboratory coordinate system follow as

EIJKL = QIMQJNE
0
MNOPQKOQLP . (11)

As an example the orthotropy symmetry class is detailed in the appendix. The spectral decomposition of the right Cauchy–
Green strain tensor C reads

C = F t · F =
3∑

i=1

λiM i (12)

with {λi}i=1,2,3 the real eigenvalues of C and {M i}i=1,2,3 the associated eigenbases (Miehe (1993)). The spectral repre-
sentation facilitates the computation of the logarithmic strain

E =
1
2

3∑
i=1

lnλiM i (13)

and allows a closed form expression for the (first and second) derivatives of the logarithmic strain with respect to the right
Cauchy–Green strain

� = 2
∂E

∂C
and � = 2

∂�

∂C
= 4

∂2E

∂C∂C
. (14)

For more details of how to compute these derivatives the interested reader is referred to Miehe and Lambrecht (2001).
Using (14), the Piola–Kirchhoff stress may be represented as

S = 2
∂ψ0

∂C
= T : � with T =

∂ψ0

∂E
= � : E. (15)

Considering this expression, the linearization of the Piola–Kirchhoff stress (tangent operator needed in a Newton type
solution scheme) reads

� = 4
∂2ψ0

∂C∂C
= �

T : � : �+ T : � with � =
∂2ψ0

∂E∂E
. (16)

The transposition symbol [•]T refers to an exchange of the first and last pairs of indices. Summarizing, the use of the
logarithmic strain in an anisotropic model of finite strain hyperelasticity has several advantages:
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• ψ0 is a quadratic function in E,

• the anisotropic stiffness tensor� is known for a wide range of symmetry classes; thus the formulation of anisotropic
hyperelasticity is straightforward,

• in a nutshell it mimics the small strain format that is, however, modified by purely geometric, problem independent
operators� and �.

4. Determining the Deformed Shape from Equilibrium

For the sake of presentation, we shall omit distributed body forces and inertia henceforth. The nonlinear deformation map
ϕ = ϕ(X) is determined for given X by the requirement of equilibrium as embodied in the following boundary value
problem

Div(F · S) = 0 in B0, (17)

[F ·S] · N = t0 on ∂Bt
0,

ϕ = ϕ on ∂Bϕ
0 .

Here t0 is a prescribed (given) traction per unit area in the material configuration (Neumann data) and ϕ is a pre-
scribed boundary deformation (Dirichlet data) and Div denotes the material divergence operator with respect to the
material coordinates X . Accordingly, the weak form of the given boundary value problem reads, with the test function
η ∈ V0 = {η ∈ H1(B0)|η = 0 on ∂Bϕ

0 }, as

G(ϕ,η; X) =
∫
B0

[F t ·∇Xη] : S dV −
∫

∂Bt
0

η · t0 dA = 0 ∀η ∈ V0. (18)

Note that the above is the common virtual work statement with a parameterization of all quantities in the (given) material
coordinates X . For hyperelastostatics the (symmetric) Piola–Kirchhoff stress is expressed as a functional of ϕ = ϕ(X)
as

S = S(∇Xϕ(X)). (19)

The corresponding linearization (directional derivative) of the weak form in the direction Δϕ at fixed material coordinates
X as needed in a Newton type solution scheme is finally expressed as

d

dε
G(ϕ + εΔϕ,η; X)|ε=0 =

∫
B0

∇Xη : � : ΔF dV. (20)

Here the fourth-order tangent operator � decomposes into the material tangent operator � (see (16)) and a geometrical
contribution

� :=
∂[F · S]
∂F

= [F⊗I] : � : [F t⊗I] + i⊗S. (21)

In the above expression I and i denote the material and spatial unit tensors with coefficients δIJ and δij , respectively, ⊗
denotes a non-standard dyadic product with [A⊗B]IJKL = AIKBJL.

5. Determining the Undeformed Shape from Equilibrium

Alternatively, the equilibrium statement may be expressed by the following variant of the boundary value problem, here in
terms of spatial description quantities

divσ = 0 in Bt, (22)

σ · n = tt on ∂Bt
t,

ϕ = ϕ on ∂Bϕ
t .
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Here tt is again the prescribed (given) traction, however now per unit area in the spatial configuration, and ϕ is the
prescribed boundary deformation, div denotes the divergence operator with respect to the spatial coordinates x. The (sym-
metric) Cauchy stress σ is obtained from the Piola–Kirchhoff stress by a push-forward according to

Jσ = F ·S · F t. (23)

The inverse form finding problem can be stated as follows: for a given spatial configuration, i.e. for a given deformed
shape parameterized by the spatial coordinates x, and associated boundary data, the material configuration, i.e. the
undeformed shape with X = Φ(x), satisfies the equilibrium requirement (22) for the spatial configuration.

Thus we now consider all quantities parameterized in the spatial coordinates x. Accordingly, the weak form of the given
boundary value problem, corresponding to the equilibrium requirement for the spatial configuration, reads

g(Φ,η; x) =
∫
Bt

∇xη : σ dv −
∫

∂Bt
t

η · tt da = 0 ∀η ∈ V0. (24)

Clearly, equation (24) is the same virtual work statement as in (18), however all integrals extend now over the spatial
configuration, that is here assumed given, and all quantities are parameterized in the given spatial coordinates x. As an
example the Piola–Kirchhoff stress S is now expressed as a functional of the inverse deformation map X = Φ(x)

S = S([∇xΦ(x)]−1). (25)

Since we now consider the spatial coordinates x as fixed and since we want to determine the inverse deformation map X =
Φ(x) we need the linearization (directional derivative) of the weak form in the direction ΔΦ at fixed spatial coordinates x

d

dε
g(Φ + εΔΦ,η; x)|ε=0 =

∫
Bt

∇xη : � : Δf dv. (26)

The computation of the corresponding fourth-order tangent operator � simplifies considerably if we make the following
assumptions:

1. the surface tractions per unit area in ∂Bt
t are given, i.e. they are independent of the inverse deformation map,

2. the material is homogeneous, i.e. σ = σ(f ) �= σ(f ,Φ).

With these assumptions � follows in a straightforward manner from the relation between the Cauchy and the Piola–
Kirchhoff stresses and application of the chain and product rules of differentiation

� :=
∂[jF · S ·F t]

∂f
= σ ⊗ F t − F⊗σ + jF ·

[
1
2
� :

∂C

∂f

]
· F t − σ⊗F . (27)

For the computation of the individual terms we make use of the following generic relations

∂[A · B]
∂A

= I⊗Bt,
∂[A ·B]
∂B

= A⊗I, (28)

together with the derivatives with respect to the inverse deformation gradient f

∂j

∂f
= jF t,

∂F

∂f
= −F⊗F t,

∂F t

∂f
= −F t⊗F . (29)

With these preliminaries in hand the derivative of the right Cauchy–Green strain is expressed as

∂C

∂f
= −F t⊗C − C⊗F t. (30)

In the above, the non-standard dyadic product ⊗ is defined by [A⊗B]IJKL = AILBJK , moreover the following useful
relations holds

[A⊗B] : [C⊗D] = [A · C]⊗[B ·D], [A⊗B] : [C⊗D] = [A ·C]⊗[B · D]. (31)
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6. Discretization and Solution Method

For the finite element solution of the two problems ((18) and (24)) the material and spatial solution domains B0 and Bt are
discretized into nel elements

B0 ≈ Bh
0 =

nel⋃
e=1

Be
0, Bt ≈ Bh

t =
nel⋃
e=1

Be
t . (32)

Following the standard isoparametric approach, both, the geometry and the deformation maps are approximated on each
element by the same shape functions

Xe(ξ) =
nen∑
i=1

X(i)N (i)(ξ), Φe(ξ) =
nen∑
i=1

Φ(i)N (i)(ξ), (33)

xe(ξ) =
nen∑
i=1

x(i)N (i)(ξ), ϕe(ξ) =
nen∑
i=1

η(i)N (i)(ξ).

Thereby the shape functions N (i) are parameterized by isoparametric coordinates ξ defined on the isoparametric cube
Bξ = [−1, 1]ndim , whereas nen is the total number of nodes per element, and X(i) = Φ(i) and x(i) = ϕ(i) denote
nodal values. Finally, following the Bubnov–Galerkin method the test function is again approximated by the same shape
functionsN (i)

ηe(ξ) =
nen∑
i=1

η(i)N (i)(ξ). (34)

Substituting the finite element approximations into the weak form, we obtain the discrete equilibrium condition as a residual
that is expressed at each node (i) (nnp is the total number of node points) as

r(i) = r
(i)
ext − r

(i)
int, i,= 1 · · ·nnp. (35)

Here the contributions to the internal and external nodal forces read as

r
(i)
int =

nel

A
e=1

∫
Be

0

[F ·S] ·∇XN
(i) dV =

nel

A
e=1

∫
Be

t

σ ·∇xN
(i) dv, (36)

r
(i)
ext =

nel

A
e=1

∫

∂Be,t
0

te
0N

(i) dA =
nel

A
e=1

∫

∂Be,t
t

te
tN

(i) da.

The common direct problem is then to determine the deformed shape for a given material configuration, thus the above
residual is considered as a (possibly nonlinear) function of the nodal deformation maps

r(i) = r(i)(ϕ(j)), i, j = 1 · · ·nnp. (37)

To solve the discrete equilibrium condition (37) numerically with a Newton–Raphson method (see e.g. Bonet and Wood
(1997)), we need the tangent stiffness matrix, i.e. the Jacobian matrix of the residual with respect to the nodal deformation
maps

k(ij) := − ∂r(i)

∂ϕ(j)
=

nel

A
e=1

∫
Be

0

∇XN
(i) 2· � ·∇XN

(j) dV. (38)

The objective of the less familiar inverse problem is to determine the undeformed shape for a given spatial configuration,
thus the above residual is considered as a nonlinear function of the nodal inverse deformation maps

r(i) = r(i)(Φ(j)), i, j = 1 · · ·nnp. (39)
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Figure 2: Anisotropic thick sheet under a distributed tension force: deformed shape of straight, rectangular geometry in the spatial configuration Bt.

Thus the tangent stiffness matrix of the inverse problem follows as the Jacobian matrix of the residual with respect to the
nodal inverse deformation maps

K(ij) := − ∂r(i)

∂Φ(j)
=

nel

A
e=1

∫
Be

t

∇xN
(i) 2· � ·∇xN

(j) dv. (40)

In the above 2· denotes contraction with the second index of the corresponding tangent operator. The implementation
renders for both problems quadratic convergencewithin a Newton solution scheme, as demonstrated in the example section.

7. Examples

The algorithm developed is applied to two benchmark problems: first we analyze the undeformed shape for a three dimen-
sional thick sheet made of two layers of anisotropic material that deforms into a flat rectangular shape under application
of a distributed tension force. Thereby we examine the influence of varying anisotropies in the two layers. The second
example is concerned with a three dimensional extension of the classical two dimensional Cook’s cantilever. Again we
seek to determine the undeformed shape for a given anisotropy and a given distributed shear force so that the deformed
shape is a straight panel.

7.1. Anisotropic thick sheet under distributed tension force

The target (straight and rectangular) geometry of the deformed sheet as well as the boundary and loading conditions are
visualized in Figure 2. The length of the deformed sheet is set to 100, the width to 20 and the thickness to 4 units of
length. The left surface of the thick sheet is fixed in three directions, i.e. fully clamped. A distributed tension load with
resultant F with 400 units of force is applied on the opposite surface in direction of E1. The domain is discretized using
trilinear hexahedral finite elements. The deformed, i.e. straight and rectangular sheet is divided in two thick layers in order
to attribute different anisotropy directions. We consider a rotation around the fixed laboratory axis E3 which rotates E1

towards E2 in order to obtain the material intrinsic base vectors E0
1 and E0

2. The rotation angles θ1 and θ2 for the two
layers can vary between 0 and 2π. More details on the resulting rotation matrix can be found in the appendix. A material
with orthotropic anisotropy in the undeformed shape is considered. Thereby the nine independent variables are comprised
of three Young’s moduliE1, E2, E3, the three Poisson’s ratios ν12, ν13, ν23 and the three shear moduliG12,G13,G23 (see
the appendix).
In the first example we set the Young’s moduli as E1=E2=E3=2100, the Poisson ratios as ν12=ν13=ν23=0.3 and thus the
shear modulus follows as G12=G13=G23=800 with θ1=θ2=0 so as to model an isotropic material. Figure 3 shows the
deformed shape in the spatial configuration Bt and Figure 4 the computed undeformed shape in the material configuration
B0. As expected the sheet simply elongates without any tendency for bending or twist, thereby we obtain an elongation of
20% in the horizontal direction. Table 1 demonstrates quadratic convergence of the residual norm as a function of iterations
using the Newton–Raphson method.
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Table 1: Residual norm displaying quadratic convergence.

iteration norm
1 3.30 E+03
2 1.93 E+03
3 4.39 E+01
4 2.44 E–02
5 4.86 E–07

Figure 3: Discretization of the deformed, i.e. straight, rectangular geometry in the spatial configuration Bt and distributed tension force.

In the subsequent examples we model anisotropy by selecting the following material parameters

E1 = 700 E2 = 2000 E3 = 1000
ν12 = 0.3 ν23 = 0.3 ν31 = 0.3
G12 = 270 G23 = 700 G31 = 400.

(41)

Furthermore we assign different anisotropy directions to the two layers by setting different values for the rotation angles
θ1 and θ2. Figures 5, 6 and 7 display the computed undeformed shape in the material configuration B0 for values of
θ1 = [0;π/2;π/4] and θ2 = [π/4;π; 3π/4], respectively. Again, the convergence of the residual norm as a function of
iterations using the Newton–Raphson method is quadratic.

7.2. Anisotropic thick cantilever under distributed shear force

The target geometry of the deformed cantilever as well as the boundary and loading conditions are shown in Figure 8.
The dimensions of the thick cantilever in Bt are L = 48, H1 = 44, H2 = 16 and W = 16 units of length. Note that
these dimensions fit to the classical two dimensional Cook’s membrane benchmark when projected to the E1 − E2 plane,
however here we treat a truly three dimensional structure with W = H2. The left side of the thick cantilever is fixed
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Figure 4: Isotropic material with θ1 = 0 and θ2 = 0: computed undeformed shape in the material configuration B0.

Figure 5: Anisotropic material with θ1 = 0 and θ2 = π/4: computed undeformed shape in the material configuration B0.



10 Germain et al. / International Journal of Structural Changes in Solids 2(2) (2010) 1-16

Figure 6: Anisotropic material with θ1 = π/2 and θ2 = π: computed undeformed shape in the material configuration B0.

Figure 7: Anisotropic material with θ1 = π/4 and θ2 = 3π/4: computed undeformed shape in the material configuration B0.
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Figure 8: Anisotropic thick cantilever under distributed shear force: deformed shape of panel-line geometry in the spatial configuration Bt.

in all directions, i.e. it is clamped. The resultant of the applied distributed shear force F is set to 20 units of force. The
domain is discretized using trilinear hexahedral finite elements. The anisotropy directions E0

I in the undeformed shape are
rotated with respect to the fixed laboratory frame EI , i.e. we consider two orthogonal unit vectors which are defined via the
following spherical coordinates: θ11 = 5π/6, θ12 = π/6, θ21 = π/3 and θ22 = π/2, see the detailed representation of the
corresponding rotation matrix in the appendix. An orthotropic material is simulated with the following nine independent
material parameters

E1 = 700 E2 = 200 E3 = 500
ν12 = 0.2 ν23 = 0.27 ν31 = 0.31
G12 = 300 G23 = 200 G31 = 100.

(42)

Figures 9, 10 and 11 show the deformed and the computed undeformed shape in the spatial and material configuration Bt

and B0, respectively, as seen in the E1 − E2 and the E1 − E3 planes. As expected, the thick cantilever has the largest
deformations in the E2 direction, however, due to the anisotropy, there is also a small contribution in the E3 direction.
The convergence of the residual norm as a function of iterations using the Newton–Raphson method is again quadratic. To
confirm the obtained results, the direct problem was re-simulated starting with the coordinates of the previously computed
undeformed shape (Figure 10), the same load, boundary conditions and material parameters. The maximum error between
the deformed shape obtained with the direct problem and the shape used to compute the undeformed shape (Figure 9) is
negligible.

8. Conclusion

This work extends a three dimensional procedure for the determination of the undeformed shape of a workpiece when
knowing its desired deformed shape, the boundary conditions and the loads, to the case of anisotropic materials, whereby
a logarithmic strain space formulation is used. We simplified the formulation of nonlinear anisotropic hyperelasticity by
some mild assumptions, i.e. no body forces are applied, the surface tractions are independent of the inverse deformation
mapping and the material is homogeneous. The application of logarithmic strains instead of the common Green–Lagrange
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Figure 9: Discretization of the deformed panel-line geometry in the spatial configuration Bt and distributed shear force (seen in the E1 − E2 plane).

strains makes the consideration of the different anisotropies extremely straightforward in that it mimics the small strain
format. Thereby spectral decomposition of the right Cauchy–Green tensor allows a simple evaluation and linearization of
the logarithmic strain measure. Two numerical examples in nonlinear orthotropic hyperelasticity illustrate the ability to
numerically approximate the undeformed shape, i.e. the question of how an anisotropic specimen must be manufactured
in order to obtain the final desired shape upon applying a prescribed load. As a control we verified that the maximum
error between the deformed shape obtained with the direct problem and the shape used to compute the undeformed shape
is indeed negligible. Future research will be conducted towards the combination between the presented framework and
different alternative approaches towards form optimization and towards the extension of the logarithmic strain formulation
to plasticity.
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Appendix

Anisotropic Elasticities

In the following we shall resort to the Voigt matrix notation for the representation of the fourth-order stiffness tensor�, the
logarithmic (Hencky) strain E and the auxiliary stress T . Exploiting symmetry the coefficients of the logarithmic strain E
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Figure 10: Computed undeformed shape in the material configuration B0 (seen in the E1 − E2 plane).

Figure 11: Computed undeformed shape in the material configuration B0 (seen in the E3 − E1 plane).
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and the auxiliary stress T are thereby arranged in column matrices e and t as

e =

⎡
⎢⎢⎢⎢⎢⎢⎣

E11

E22

E33

2E(12)

2E(23)

2E(31)

⎤
⎥⎥⎥⎥⎥⎥⎦
, t =

⎡
⎢⎢⎢⎢⎢⎢⎣

T11

T22

T33

T(12)

T(23)

T(31)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (43)

Accordingly, the coefficients of the fourth-order stiffness tensor � are arranged in a matrix E as

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

E1111 E1122 E1133 E11(12) E11(23) E11(31)

E2211 E2222 E2233 E22(12) E22(23) E22(31)

E3311 E3322 E3333 E33(12) E33(23) E33(31)

E(12)11 E(12)22 E(12)33 E(12)(12) E(12)(23) E(12)(31)

E(23)11 E(23)22 E(23)33 E(23)(12) E(23)(23) E(23)(31)

E(31)11 E(31)22 E(31)33 E(31)(12) E(31)(23) E(31)(31)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (44)

Here (ij) denotes symmetrization of indices. A corresponding arrangement into a matrix E0 holds for the coefficients of
� with respect to the material intrinsic coordinate system with base vectors E0

M . Summarizing, the following constitutive
relation, familiar from the linear elastic small strain setting, holds in Voigt matrix notation

t = Ee. (45)

Anisotropic materials are classified into different symmetry classes such as monoclinic, tetragonal, trigonal, cubic, trans-
versely isotropic, orthotropic, etc. We shall here restrict ourselves to the case of orthotropy, thus the coefficients of the
corresponding stiffness tensor with respect to the intrinsic coordinate system follow in the previously introduced Voigt
matrix notation as

E0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν23ν32
E2E3Δ

ν21 + ν23ν31
E2E3Δ

ν31 + ν32ν21
E2E3Δ

0 0 0
1 − ν31ν13
E3E1Δ

ν32 + ν31ν12
E3E1Δ

0 0 0
1 − ν12ν21
E1E2Δ

0 0 0

SYM G12 0 0
G23 0

G31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (46)

Here the anisotropic stiffness is characterized by nine independent material parameters

E1, E2, E3, ν12 =
E1

E2
ν21, ν23 =

E2

E3
ν32, ν31 =

E3

E1
ν13, G12, G23, G31. (47)

Thereby EM denote elasticity moduli in the orthotropy directions E0
M whereas GMN and νMN denote shear moduli and

Possion ratios in the orthotropy planes spanned by E0
i and E0

j . Moreover, Δ denotes the abbreviation

Δ =
1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν23ν31

E1E2E3
. (48)

Rotation of Base Vectors

In the sequel we shall follow the exposition in Menzel and Steinmann (2001). The material intrinsic base vectors E0
K are

given by a forward rotation from the base vectors EI of the laboratory coordinate system

E0
K = Q · EK = QIKEI , with Q = QIJEI ⊗ EJ = E0

J ⊗ EJ . (49)
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E2

E3

E0
K

θ1K

θ2K

Figure 12: Spherical coordinates.

HereQIJ denote the coefficients of the rotation tensor Q in the laboratory coordinate system. In spherical coordinatesQIJ

may be expressed in terms of two angles θ1K and θ2K for each base vector E0
K = QIKEI (Figure 12) such that

[QIK ] =

⎡
⎣sinθ11sinθ21 sinθ12sinθ22 sinθ13sinθ23

cosθ21 cosθ22 cosθ23
cosθ11sinθ21 cosθ12sinθ22 cosθ13sinθ23

⎤
⎦ . (50)

Clearly, the angles θ1K and θ2K may not be chosen independently for K = 1, 2, 3 but have to satisfy the orthonormality
conditions E0

K · E0
L = [QIKEI ] · [QJLEJ ] = QIKQIL = δKL. Finally the transformation of the coefficients of the

stiffness tensor due to the rotation of basis vectors as given by RIJMN = QIMQJN , i.e.

EIJKL = RIJMNE
0
MNOPRKLOP (51)

is expressed in Voigt matrix notation as

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q2
11 Q2

12 Q2
13 2Q11Q12 2Q12Q13 2Q13Q11

Q2
21 Q2

22 Q2
23 2Q21Q22 2Q22Q23 2Q23Q21

Q2
31 Q2

32 Q2
33 2Q31Q32 2Q32Q33 2Q33Q31

Q11Q21 Q12Q22 Q13Q23 Q11Q22 +Q12Q21 Q12Q23 +Q13Q22 Q13Q21 +Q11Q23

Q21Q31 Q22Q32 Q23Q33 Q21Q32 +Q22Q31 Q22Q33 +Q23Q32 Q23Q31 +Q21Q33

Q31Q11 Q32Q12 Q33Q13 Q31Q12 +Q32Q11 Q32Q13 +Q33Q12 Q33Q11 +Q31Q13

⎤
⎥⎥⎥⎥⎥⎥⎦
. (52)

The coefficients of the stiffness tensor in Voigt matrix notation thus follow as

E = RE0Rt. (53)

As an example for the simple case of a counter-clockwise rotation with angle θ around the E3 axis of the laboratory
coordinate system, i.e. θ1β = π/2, θ21 = π/2 − θ, θ22 = −θ, we obtain for the rotation coefficients in matrix notation

Q = [QIJ ] =

⎡
⎣+cosθ −sinθ 0

+sinθ +cosθ 0
0 0 1

⎤
⎦ . (54)

The transformation matrix R then reduces to

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2θ sin2θ 0 −2cosθsinθ 0 0
sin2θ cos2θ 0 +2cosθsinθ 0 0

0 0 1 0 0 0
cosθsinθ −cosθsinθ 0 cos2θ − sin2θ 0 0

0 0 0 0 +cosθ +sinθ
0 0 0 0 −sinθ +cosθ

⎤
⎥⎥⎥⎥⎥⎥⎦
. (55)
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