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Abstract: 
 

A thermodynamically consistent macroscopic constitutive model for concrete that incorporates concrete effective stress space 
plasticity and fracture energy based - continuum damage mechanics is presented. A plasticity yield criterion, with multiple hardening 
functions and a non-associative plastic flow rule, is used simultaneously with two (tensile and compressive) isotropic damage 
criteria. The spectral decomposition of the stress tensor into tensile and compressive components is utilized in all criteria in order to 
simulate different responses of the material under various loading patterns. The damage criteria are based on the hydrostatic-
deviatoric sensitive damage energy release rates in tension and compression derived from the Helmholtz free energy function. Three 
dissipation mechanisms are defined, one for plasticity and two for damage, to control the dissipation process in the material model. 
The consistent elastic-plastic-damage tangent operator is also derived, which concludes the theoretical formulation of the proposed 
model. Verification examples are provided in order to evaluate the ability of the proposed model to capture the behavior of concrete 
under different states of loading. The detailed scheme of numerical integration of the constitutive equations and the application of the 
proposed model to study concrete and reinforced concrete members are important issues discussed in part II of this work    
 
Keywords: Continuum Damage Mechanics, Concrete Plasticity Theory, Consistent Thermodynamics, Strain Equivalence Hypothesis, Consistent 
Damage-Elasto-Plastic Tangent Operator, Failure and Localization Analysis.  

 
1. Introduction 

 
Modeling the physical behavior of concrete materials in structural components remains as one of the most 

challenging fields in structural engineering. Sophisticated models are required in order to capture the nonlinearities that 
arise as the material is loaded. On the other hand, as the scope of a study reaches larger scales of structures, the 
complexity of those sophisticated models hinders the analysis and becomes an immense barrier between their 
theoretical elegance on one side and their implementation cost, applicability and convergence on the other. Therefore, 
the motivation of a study in this field should be the development of a consistent and rigorous approach to the 
constitutive modeling of concrete that is still simple to implement into Finite Elements (FE) codes, feasibly inexpensive 
to run, and capable of demonstrating convergence. 

Throughout the years, different concepts involving plasticity theory and/or continuum damage mechanics have been 
used to simulate the experimentally observed behavior of concrete materials. Many efforts were presented by 
researchers to modify the classical theory of plasticity in order to make it more suitable for concrete materials by 
including the softening directly in the expression of a plastic yield surface by means of a hardening-softening function 
(Feenstra and de Borst, 1996; Bicanic and Pearce, 1996; Grassl et. al., 2002; Park and Kim, 2005; and others). The 
plasticity-based approach was criticized for being unable to capture the stiffness degradation due to progressive damage 
growth; a drawback that has been debated in literature (e.g., Feenstra and de Borst, 1996). 

Other researchers applied continuum damage mechanics to linear elastic analysis of concrete where the mechanical 
effect of the progressive microcracking and strain softening are represented by a set of internal state variables which act 
on the elastic behavior (Mazars, 1984; Mazars and Pijaudier-Cabot, 1989; Willam et. al., 2001; Comi and Perego, 2001; 
Tao and Phillips, 2005; Labadi and Hannachi, 2005; Junior and Venturini, 2007; Khan et. al., 2007). These elastic-
damage models were successful in capturing the behavior of concrete under unaxial loadings but many were criticized 
for being unable to model the plastic irreversible phenomena and their observed effects especially under more 
complicated loading combinations. 

In order to capture the degradation of the elastic stiffness of the concrete material as well as its plastic irreversible 
deformations upon mechanical loading, the combined use of elastic-plastic constitutive equations along with continuum 
damage mechanics became vital to better describe the mechanical behavior of concrete. A brief literature survey reveals 
several possibilities for coupling plasticity and damage effects in a single constitutive relation. 
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One way is to coupled damage to concrete plasticity by defining damage growth as a function of plastic strains (e.g. 
Lubliner et. al., 1989; Oller et. al., 1990; Meschke and Lackner, 1997; Voyiadjis and Abu-Lebdeh, 1993, 1994; Abu-
Lebdeh and Voyiadjis, 1993; Kratzig and Polling, 2004; and others). A difficulty arises however due to the fact that 
under uniaxial tension there is minor plastic effect and considerable damage growth, while under uniaxial compression, 
the situation is reversed with little damage and important plastic strains. In addition, it is not straight forward to explain 
how plastic strain may develop in concrete prior to microcracking. A common assumption is that irreversible strains are 
due to microcrack sliding and internal friction. Such a process requires the prior formation of internal surfaces, i.e., 
microcracks, (Jason et.al., 2006).  

Another approach, that is more suited to both tension and compression responses of concrete, uses the effective 
stress space concept (Ju, 1989). The plastic yield function is written in the effective configuration pertaining to the 
stresses in the undamaged material. Many authors (Mazars and Pijaudier-Cabot, 1989; Yazdani and Schreyer, 1990; 
Hansen and Schreyer, 1992; Lee and Fenves, 1998, 2001; Faria et. al., 1998; Fichant et. al., 1999; Voyiadjis and Kattan, 
1999, 2006; Jefferson, 2003; Salari et. al., 2004; Shen et. al., 2004; Jason et. al., 2006; Contrafatto and Cuomo, 2006; 
Cicekli et. al., 2007; Voyiadjis et. al., 2008b; Taqieddin, 2008) applied this approach to isotropic and anisotropic 
damage coupled to elasto-plasticity. It has been extended to other sources of damage, for instance, thermal damage as 
shown by Nechnech et. al. (2002) and Willam et. al. (2003). 

A third possibility is the strong coupling approach. In contrary to the above where the plastic yield function is 
written in term of the effective stress, the actual (applied) stress appears in the plastic process, which becomes coupled 
to damage. The damage variables are coupled with the plastic deformation in the constitutive formulations which 
provide help in calibrating the parameters with the experimental results. Yet, the coupled relations are complex and 
result in an unstable numerical algorithm. This kind of algorithm may cause unrealistic representation of the plastic 
behavior of the concrete during numerical implementation and iteration procedures (Lee and Fenves, 1998). Luccioni 
et. al. (1996), Gatuingt and Pijaudier-Cabot (2002); and Voyiadjis et. al. (2008a) provided thermodynamic consistent 
backgrounds of such a model. 

A thermodynamically consistent macroscopic elastic-plastic-damage constitutive approach is proposed here in an 
effort to model the nonlinear behavior of concrete materials. It is based on a fracture energy enhanced isotropic damage 
model, with tensile/ compressive damage criteria and parameters, combined with an effective stress space plasticity 
yield criterion with multiple hardening rules and a non-associative plasticity flow rule. The isotropic damage models the 
softening response and the decrease in the elastic stiffness, while hardening plasticity accounts for the development of 
irreversible strains and volumetric compressive behavior within the effective configuration.  

The effective stress space concept is adopted here to provide a simple way to separate the damage and plastic 
processes in order to ease the numerical implementation into FE codes. An implicit/explicit approach is used, where the 
plastic part is implicit followed by an explicit damage part that depends on the updated effective stress and strain 
tensors. As a consequence, existing robust algorithms for integrating the constitutive relations can be implemented. The 
calibration of the material parameters is also easier to handle as a consequence of the separation of damage and 
plasticity processes. 

The damage process here is elastic and strain controlled. The isotropic damage model proposed by Tao and Phillips 
(2005) will be modified here to better describe the damage behavior of concrete. While the Tao and Phillips (2005) 
model incorporated strain-softening in an elastic-damage framework without any fracture energy based coefficients 
(mesh sensitivity reduction coefficients), it is used in this work simultaneously with the effective stress space plasticity 
in order to describe damage irreversible phenomena in concrete materials. The plastic process shall be described using a 
yield function introduced by Lubliner et. al. (1989) and later modified by Lee and Fenves (1998) and Wu et. al. (2006). 
Fracture energy related coefficients (Feenstra and de Borst, 1996; Lee and Fenves, 1998; Wu et. al., 2006) are defined 
and incorporated in order to achieve a reasonable degree of discretization insensitivity in numerical calculations. 

 
2.   Elastic-Plastic-Damage Constitutive Relation 

 
 The model presented in this work is thermodynamically consistent and comes from a generalization of the effective 

stress space plasticity theory and isotropic continuum damage theory applied simultaneously under the assumptions of 
small strains, isothermal conditions and rate independence. The underlying mechanism to incorporate the effects of 
damage is provided by the hypothesis of strain equivalence (Steinmann et. al., 1994; Lemaitre and Chaboche, 1998; 
Voyiadjis and Kattan, 1999, 2006; Lammer and Tsakmakis, 2000; Menzel and Steinmann, 2003) between the 
intermediate configuration of multiplicative elastoplasticity and an additional fictitious or rather effective configuration 
(designated by an over-bar on top of the symbol). The hypothesis of strain equivalence states that the strains in the 
undamaged (effective) configuration are equal to the strains in the damaged counterpart, which can be expressed using 
the additive decomposition of the strain tensor into elastic and plastic parts as follows: 
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e p
ij ij ij

ij ije p
ij ij ij

ε ε ε
ε ε

ε ε ε

⎧ ⎫= +⎪ ⎪ ⇒ =⎨ ⎬
= +⎪ ⎪⎩ ⎭

   (1) 

The equivalence of the elastic strains will be used to obtain an expression for the elasticity tensor ( )ijklE Φ  in the 
damaged configuration, as well as the damage thermodynamic conjugate forces Y ±  used in the damage yield 
criteria g ± . The equivalence of the plastic strains, on the other hand, will be justified through the use of the effective 
stress space plasticity (Ju, 1989) and the definition of the plastic Helmholtz free energy function. Both equivalences will 
be further discussed in a subsequent section. 

By taking the time derivative of the arrangements in Eq. (1), the following strain rate equations necessary for the 
plastic-damage incremental procedure are obtained: 

  
e p

ij ij ij
ij ije p

ij ij ij

ε ε ε
ε ε

ε ε ε

⎧ ⎫= +⎪ ⎪ ⇒ =⎨ ⎬
= +⎪ ⎪⎩ ⎭

   (2) 

 The effective stress tensor (stresses in the undamaged configuration) can now be written in terms of the strain 
equivalence hypothesis and using Hook’s law as: 

( )e p
ij ijkl kl ijkl kl klE Eσ ε ε ε= = −    (3) 

where 
ijk lE  is the fourth-order isotropic elasticity tensor, also known as the undamaged elastic operator, given as: 

2 d ev
ijk l ijk l ij k lE G I K δ δ= +     (4) 

where 1
3

dev
ijkl ijkl ij klI I δ δ= −  is the deviatoric part of the fourth-order identity tensor 1

2 ( )ijkl ik jl il jkI δ δ δ δ= + , and G  
and K  are the linear elastic shear and bulk moduli, respectively.   The tensor 

ijδ  is the Kronecker delta, and is equal to 
one, 1ijδ =  when i j=  or zero, 0ijδ =  when i j≠ . 

 The rate of the stress tensor in the effective (undamaged) configuration can be written in terms of the strain 
equivalence hypothesis and Hook’s law as: 

( )e p
ij ijkl kl ijkl kl klE Eσ ε ε ε= = −    (5) 

The damage configuration counterpart of Eq.(3), i.e. the stress tensor for the damaged material, is given as follows: 

( ) ( )( )e p
ij ijkl kl ijkl kl klE Eσ ε ε ε= Φ = Φ −   (6) 

where ijklE  is the fourth-order elasticity tensor dependent on the damage properties. 
 Applying the effective stress concept of Kachanov (1958), the Cauchy stress tensor 

ijσ  is related to the effective 
stress tensor ijσ  through the following expression: 

(1 )ij ijσ σ= − Φ    (7) 

The parameter Φ  is the combined scalar damage variable defined here similar to that given by (Tao and Phillips, 
2005): 

ij ij

ij

σ ϕ σ ϕ

σ

+ + − −+
Φ =    (8) 

where ϕ +  and ϕ −  are the tensile and compressive damage crack densities, respectively, 
ijσ +  and 

ijσ −  are the positive and 
negative spectral decomposition parts of the effective stress tensor, 

ijσ , obtained using the elastic-predictor plastic-
corrector steps, and 

ijX  represents the scalar contraction of the second order tensor (an invariant), i.e.,  
ij ij ijX X X= .  

This definition implies that damage under uniaxial loading is governed by the corresponding damage parameter, while 
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under bi-axial loading two damage parameters, ϕ + andϕ − , both contribute to the induced damage. Their effective 
contribution is in proportion to the ratio of positive and negative stress contractions to the total stress contraction. This 
definition is different than that given by Tao and Phillips (2005) where they avoided the decomposition of the stress 
tensor into positive and negative tensors by separating the principal values of the stress tensor into positive and negative 
values to further simplify the implementation in an FE code. 

 By substituting Eqs. (3) and (6) into Eq. (7), one obtains the following relations:  

(1 )ijkl ijklE E= − Φ    (9) 

(1 ) ( )p
ij ijkl kl klEσ ε ε= − Φ −   (10) 

 The expression for the fourth order elasticity tensor in the damaged configuration 
ijklE  in terms of its effective 

counterpart 
ijklE  will also be derived from the elastic dissipation potential later on. The damage variable Φ  has values 

from ranging from zero to one. The value 0Φ =  corresponds to the undamaged (effective) material and the value 1Φ =  
corresponds to the fully damaged material. Damage associated with the failure mechanisms of the concrete (cracking 
and crushing) results in a reduction in the elastic stiffness (Eq.(9)). Within the context of the scalar-damage theory, the 
stiffness degradation is isotropic (i.e. the same damage evolution is assumed in different directions) and represented by 
a single degradation value Φ . The time derivative can now be applied to Eq. (10) to obtain the following constitutive 
relation for the elastic-plastic-damage model used in this work: 

(1 ) e e
ij ijkl kl ijkl klE Eσ ε ε= − Φ − Φ   (11) 

 
3.   Consistent Thermodynamic Formulation 
 

In this section, the thermodynamic framework of the elastic-plastic-damage formulation for concrete is developed. 
Irreversible thermodynamic following the internal variable procedure of Coleman and Gurtin (1967) will be applied. 
The internal variables and potentials used to describe the thermodynamic processes are introduced. The Lagrange 
minimization approach (calculus of functions of several variables) is used to derive the evolution equations for the 
proposed model. The constitutive equations are derived from the second law of thermodynamics, the expression of 
Helmholtz Free Energy (HFE), the additive decomposition of the total strain rate into elastic and plastic components, 
the Clausius-Duhem inequality, and the maximum dissipation principle. 

The HFE can be expressed as a function of the following internal state variables characterizing the behavior of 
concrete both in tension and compression:  the elastic strain tensor e

ijε , a set of plastic hardening variables (κ + ,κ − ) 
defined here as the equivalent plastic strains in tension and compression, respectively, and the scalar damage variables 
(ϕ +  and ϕ − ) representing the damage densities in the material under tension or compression,  respectively, such that: 

( , , , , )e
ijψ ψ ε κ κ ϕ ϕ+ − + −=   (12) 

The constitutive model proposed here is based on the hypothesis of uncoupled elasticity (e.g. Lubliner, 1990; 
Luccioni et. al., 1996; Faria et. al., 1998; Nechnech et. al., 2002; Salari et. al., 2004; Kratzig and Polling, 2004; 
Luccioni and Rougier, 2005; Shao et.  al., 2006; Wu et. al., 2006). According to this hypothesis, the total free energy 
density per unit volume ψ  can be assumed to be formed by two independent parts: an elastic part eψ  and a plastic 
part pψ , corresponding to the elastic and plastic process respectively (both dissipative). Therefore, the HFE is given as: 

( , , ) ( , )e e p
ijψ ψ ε ϕ ϕ ψ κ κ+ − + −= +   (13) 

It is assumed in the above decomposition that damage affects the elastic prosperities and not the plastic ones. This 
can be justified by the following: once micro-cracks are initiated during loading of a concrete material, local stresses are 
redistributed to undamaged material micro-bonds over the effective (undamaged) area. Thus, effective stresses of 
undamaged material points are higher than nominal stresses. Accordingly, it appears reasonable to state that the plastic 
flow occurs only in the undamaged material micro-bounds by means of effective quantities (Ju, 1989). The plastic 
response is therefore characterized in the effective stress space and the yield function is no longer written in term of the 
applied stress, rather, it is a function of the effective stress, i.e., the stress in the undamaged material in between the 
microcracks. This approach, which is more suited for brittle materials like concrete, has been extensively used by 
researchers (Simo and Ju, 1987a,b; Ju, 1989; Mazars and Pijaudier-Cabot, 1989; Yazdani and Schreyer, 1990; Hansen 
and Schreyer, 1992; Lee and Fenves, 1998; Faria et. al., 1998; Fichant et. al., 1999; Salari et. al., 2004; Jefferson, 2003; 
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Jason et. al., 2006; and others). This does not necessarily mean that the damage properties will not be affected by the 
plastic ones. As will be shown in the verification part of this work, the variation of the plastic behavior-related 
parameters will greatly affect the evolution of damage. 

In the following, the thermodynamic conjugate forces associated with the internal state variables in Eqs. (12) or (13) 
are derived based on the second law of thermodynamics. For isothermal behavior, the second-law of thermodynamics 
states that the rate of change in the internal energy is less than or equal to the external expenditure of power such that:  

d v e x t
v

Pρψ ≤∫
  (14) 

where extP  is the external power which according to the principle of virtual power should be equal to the internal power 
such that: 

int dvext ij ij
v

P P σ ε= = ∫   (15) 

Substituting Eq. (15) into Eq. (14), one obtains the following: 

dv dv 0 ( ) dv 0ij ij ij ij
v v v

ρ ψ σ ε ρ ψ σ ε− ≤ ⇔ − ≤∫ ∫ ∫  (16) 

In a stepwise sense, the Clausius-Duhem inequality can be inferred from Eq. (16) as follows: 

0ij ijσ ε ρψ− ≥   (17) 

Taking the time derivative of Eq. (13), the following expression can be written: 

+κ κ

e e e p p
e p e

ije
ij

ψ ψ ψ ψ ψψ ψ ψ ε ϕ ϕ κ κ
ε ϕ ϕ

+ − + −
+ − −

∂ ∂ ∂ ∂ ∂
= + = + + + +

∂ ∂ ∂ ∂ ∂
 (18) 

By substituting the rate of the HFE density, Eq. (18), into the Clausius-Duhem inequality, Eq. (17), one can write 
the following relation: 

0
e e e p p

p e
ij ij ij ije

ij

ψ ψ ψ ψ ψσ ε σ ρ ε ρ ϕ ρ ϕ ρ κ ρ κ
ε ϕ ϕ κ κ

+ − + −
+ − + −

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ − − − − − ≥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

  (19) 

The above equation is valid for any admissible internal state variable such that the Cauchy stress tensor can be 
define as: 

e

ij e
ij

ψσ ρ
ε

∂
=

∂
  (20) 

and the non-negativeness of intrinsic dissipation can be written as: 

0p
ij ij Y Y c cσ ε ϕ ϕ κ κ+ + − − + + − −+ + − − ≥   (21) 

where the damage (Y ± ) and plasticity ( c± ) conjugate forces that appear in the above expression are defined as follows:   

, , ,
e e p p

Y Y c cψ ψ ψ ψρ ρ ρ ρ
ϕ ϕ κ κ

+ − + −
+ − + −

∂ ∂ ∂ ∂
= − = − = =

∂ ∂ ∂ ∂
 (22)a-d 

The mechanical dissipation must satisfy the first (Clausius-Duhem) inequality of thermodynamics and can be 
decomposed in two parts: one part due to the plastic process pΠ  and the other due to the damage process dΠ . The 
mechanical dissipation energy function Π  can therefore be written as follows:      

0p dΠ = Π + Π ≥   (23) 

The plasticity and damage dissipation potentials are given, respectively, as follows: 

0p p
ij ij c cσ ε κ κ+ + − −Π = − − ≥   (24) 



 
 
 
 

 Voyiadjis et al. / International Journal of Structural Changes In Solids, 1 (2009) 
 

 

36 

0d Y Yϕ ϕ+ + − −Π = + ≥   (25) 

The rate of the internal variables associated with plastic and damage deformations are obtained by utilizing the 
calculus of functions of several variables with the plasticity and damage Lagrange multipliers pλ  and dλ ± , respectively. 
Thus the following general objective function can be defined: 

0p
d dF g gλ λ λ+ + − −Ω = Π − − − ≥   (26) 

where F  and g ±  are the plastic potential function and the tensile and compressive damage potential functions, 
respectively,  to be defined later. 

Use is now made of the well known maximum dissipation principle (Simo and Honein, 1990; Simo and Hughes, 
1998), which describes the actual state of the thermodynamic forces ( ijσ ,Y ± , c± ) as the state that maximizes the 
dissipation function over all other possible admissible states. Hence, one can maximize the objective function Ω  by 
using the following necessary conditions: 

0, 0, 0
ij Y cσ ± ±

∂Ω ∂Ω ∂Ω
= = =

∂ ∂ ∂
  (27) 

Substituting Eq. (26) into Eq. (27) along with Eqs. (24) and (25) yields the following thermodynamic laws 
corresponding to the conjugate forces (Eq. (22)): 

, ,

,

p
p p

ij d d
ij

p p

F g g
Y Y

F F
c c

ε λ ϕ λ ϕ λ
σ

κ λ κ λ

+ −
+ + − −

+ −

+ −
+ −

∂ ∂ ∂
= = =

∂ ∂ ∂

∂ ∂
= =

∂ ∂

 (28)a-e 

Note that Eq. (28) a is defined in terms of a plastic potential pF  different from F  to indicate the use of a non-
associative flow rule. It is also worthy to note that in this work, the damage criteria are characterized with scalar 
quantities – scalar thermodynamic conjugate forces and scalar damage parameter - therefore, the above general 
thermodynamic evolution laws for damage, Eqs. (28)b and (28)c, will be greatly simplified in the implementation 
procedure discussed in part II of this work. 
 
4.   The Helmholtz Free Energy Function 
 

Based on the additive decomposition of the HFE function into elastic-damage and plastic parts discussed earlier, 
Eq.(13), this section introduces specific forms for the elastic-damage and plastic parts of the HFE function adopted in 
this work. The elastic-damage part of the HFE function will be defined first, followed by a definition for the plastic part.  

The elastic-damage part of the HFE is defined using the spectral decomposition of the Cauchy stress tensor into 
tensile and compressive parts as well as the combined scalar damage variable, Φ , defined in Eq. (8). 

To account for the different effects of damage mechanisms on the nonlinear performance of concrete under tension 
and compression, spectral decomposition (e.g. Ortiz, 1985; Ju, 1989; Lubliner et. al., 1989; Faria et. al., 1998; Lee and 
Fenves, 1998; Wu et. al., 2006) of the effective stress tensor ijσ  into positive and negative components (

ijσ + ,
ijσ − ) is 

performed such that: 

ij ij ijσ σ σ+ −= +   (29) 

The total effective stress tensor 
ijσ  can be written in terms of its principal values ( )ˆ kσ  and their corresponding 

principal directions ( )k
in  ( k =1, 2, 3) as follows:                        

3
( ) ( ) ( ) (1) (1) (1) ( 2 ) ( 2 ) ( 2 ) ( 3 ) ( 3 ) ( 3 )

1

ˆ ˆ ˆ ˆk k k
ij i j i j i j i j

k
n n n n n n n nσ σ σ σ σ

=

= = + +∑  (30) 

The positive part ijσ +  can be obtained by considering only the tensile principal values as follows:                                  
3

( ) ( ) ( ) ( )

1

ˆ ˆ( )k k k k
ij i j

k

H n nσ σ σ+

=

= ∑   (31) 
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where H is the Heaviside step function (H = 1 for max
ˆ 0σ >  and  H = 0 for max

ˆ 0σ < ). 

      The principal stresses ( )ˆ kσ  in Eqs. (30) and (31) are defined in the following form: 
( ) ( ) ( )ˆ k k k

p pq qn nσ σ=   (32) 
By substituting Eq. (32) into Eq. (31), the tensile stress can be written as: 

3
( ) ( ) ( ) ( ) ( )

1

ˆ( )k k k k k
ij p pq q i j

k

H n n n nσ σ σ+

=

= ∑   (33) 

The above equation can be rewritten as follows: 

ij ijpq pqPσ σ+ +=   (34) 

where   
3

( ) ( ) ( ) ( ) ( )

1

ˆ( )k k k k k
ijpq i j p q

k

P H n n n nσ+

=

= ∑   (35) 

and substituting Eq. (34) into Eq. (29), the following expressions are obtained: 

ij ijpq pq ij

ij ij ijpq pq ijpq ijpq pq ijpq pq

ijpq ijpq ijpq

P

P I P P

I P P

σ σ σ

σ σ σ σ σ

+ −

− + + −

+ −

= +

⎡ ⎤= − = − =⎣ ⎦
= +

 (36) 

where 
ijpqP+  and 

ijpqP−  are the tensile and compressive fourth-order projection tensors, respectively.  
Next, the effective or undamaged elastic free energy eρψ  of the concrete material is expressed as follows: 

1 1
2 2

e e e e
ij ijkl kl ij ijEρψ ε ε σ ε= =   (37) 

In order to account for the stiffness degradation induced by the concrete material damage, the elastic free energy in 
the damaged configuration can be written in terms of the elastic strain equivalence hypothesis as follows: 

1 1 1(1 ) ( ) (1 )
2 2 2

e e e e e e e
ij ijkl kl ij ijkl kl ij ijE Eρψ ρψ ε ε ε ε σ ε= − Φ = Φ = − Φ =  (38) 

The previous equation can be substituted into Eq. (20) to give the constitutive stress strain relation in the damaged 
configuration, Eq. (10). It also shows that the elasticity tensor in the damaged configuration ( )ijklE Φ  is given in terms of 
the elasticity tensor in the effective configuration 

ijklE  as shown in Eq. (9). 
Experimental evidence (Resende, 1987) demonstrates that the susceptibility of concrete to damage and failure is 

different under pure hydrostatic loading than under deviatoric loading. Therefore, and in order to distinguish the 
different contributions of hydrostatic and deviatoric stress/strain components to damage, the above potential is separated 
into two parts and written as: 

1 1 1(1 )( ) ( )
2 3 3

e e e e e
ij mm ij ijkl kl nn kle E eρψ ε δ ε δ= − Φ + +  (39) 

In the above equation, the elastic strain tensor, e
uvε ,  has been additively decomposed into deviatoric, e

uve , and 

hydrostatic, 1
3

e
ppε ,  parts such that: 

1
3

e e e
uv uv pp uveε ε δ= +   (40) 

Expanding the above equation, one obtains the following: 
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2

1 1 1(1 )(
2 3 3

1 ( ) )
9

e e e e e e e
ij ijkl kl nn ij ijkl kl mm ij ijkl kl

e
mm ij ijkl kl

e E e e E E e

E

ρψ ε δ ε δ

ε δ δ

= − Φ + +

+

 (41) 

The term involving pure hydrostatic strains can be isolated from the rest of the terms as follows: 

2

1 1 1(1 )( )
2 3 3

1 1(1 )( ( ) )
2 9

e e e e e e e
ij ijkl kl nn ij ijkl kl mm ij ijkl kl

e
mm ij ijkl kl

e E e e E E e

E

ρψ ε δ ε δ

ε δ δ

= − Φ + +

+ − Φ

 (42) 

To reduce the susceptibility of the hydrostatic part to damage, Tao and Phillips (2005) used a damage multiplier χ  
in the term involving pure hydrostatic strain, 21 (1 )( )

18
e
mm ij ijkl klEε δ δ− Φ , as follows: 

2

1 1 1(1 )( )
2 3 3

1 1(1 )( ( ) )
2 9

e e e e e e e
ij ijkl kl nn ij ijkl kl mm ij ijkl kl

e
mm ij ijkl kl

e E e e E E e

E

ρψ ε δ ε δ

χ ε δ δ

= − Φ + +

+ − Φ

 (43) 

Considering the last term in the previous equation, the following manipulation can be performed in order to reach an 
objective result: 

2 2

2

2

1 1 1 1(1 )( ( ) ) (1 )( ( ) )
2 9 2 9

1 1 1(1 ) ( ) ( ( ) )
2 2 9
1 1 1(1 ) (1 ) ( ( ) )
2 2 9

Zero
e e
mm ij ijkl kl mm ij ijkl kl

e
mm ij ijkl kl

e
mm ij ijkl kl

E E

E

E

χ ε δ δ χ ε δ δ

χ ε δ δ

χ ε δ δ

− Φ = −Φ + Φ − Φ

⎡ ⎤= − Φ + Φ − Φ⎢ ⎥⎣ ⎦
⎡ ⎤= − Φ + − Φ⎢ ⎥⎣ ⎦

 (44) 

Substituting the final term in the above equation to Eq. (43), one obtains the following relation: 

2

2

1 1 1 1(1 )( ( ) )
2 3 3 9

1 1(1 ) ( ( ) )
2 9

e e e e e e e e
ij ijkl kl nn ij ijkl kl mm ij ijkl kl mm ij ijkl kl

e
mm ij ijkl kl

e E e e E E e E

E

ρψ ε δ ε δ ε δ δ

χ ε δ δ

= − Φ + + +

+ − Φ

 (45) 

Comparing the above equation with Eq. (41), it can be seen that the first term on the right hand side of Eq. (45) is 
identical to the right hand side of Eq. (41), therefore, the elastic free energy function can be now written in terms of the 
total strain tensor and the hydrostatic strain tensor with the effect reduction factor, β , as follows:  

21 1 1(1 ) (1 ) ( ( ) )
2 2 9

e e e e
ij ijkl kl m m ij ijkl klE Eρψ ε ε χ ε δ δ= − Φ + − Φ  (46) 

Based on the failure characteristics of concrete and the experimental fact that the effect of the hydrostatic strain 
component on damage is less than that of the deviatoric component, Tao and Phillips (2005) designed the damage 
multiplier (or damage reduction factor) χ  to provide this reduction effect. Clearly, χ  is less than or equal to one 
( 0 1χ≤ ≤ ). For the uniaxial version, they defined the damage multiplier χ  as the ratio of the average stress / 3mmσ  to 
the maximum principal stress 1σ̂ , i.e., 1ˆ( / 3) /mmσ σ . Whereas, under bi-axial loadings, the response of concrete is 
dependent on the stress ratio, and since a relationship between damage and stress ratios is not straightforward to 
establish and due to the fact that no matter what the stress ratios are, it is with no doubt that material damage is the 
consequence of energy dissipation from the damage mechanics point of view, consequently, the bi-axial version of the 
damage multiplier χ  is proposed to be a damage energy release rate, Y , dependent parameter (Tao and Phillips, 2005). 
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Different mathematical forms of the damage multiplier can be assumed as long as they can match the corresponding 
experimental data. Tao and Phillips (2005) adopted the following form of the damage reduction factor χ : 

11
1 exp( )cY dY

χ = −
+ −

  (47) 

where ( exp ) is the base of natural logarithms, and c  and d  can be regarded as two material constants to make χ  
dimensionless and be determined so as to match the experimental data. It is worth mentioning here that this form of the 
damage reduction factor introduces nonlinearity to the definition of the damage energy release rate (damage conjugate 
force)Y , and requires local iterations when solving for that damage release rate during a given strain increment. In this 
work, two reduction factors χ ±  are used to correspond to the different tensile and compressive responses of the material 
to hydrostatic stresses.    

Based on the thermodynamic framework, one can obtain expressions for the damage thermodynamic conjugate 
forces Y +  and Y −  from Eqs.  (46), (22)a, and (22)b in the following form: 

21 1 (1 )( )
2 9

e
ij e e e

ij ijkl kl mm ij ijkl kl
ij

Y E E
σψρ ε ε χ ε δ δ

ϕ σ

+
+ +

+

∂ ⎛ ⎞= − = − −⎜ ⎟∂ ⎝ ⎠
 (48) 

21 1 (1 )( )
2 9

e
ij e e e

ij ijkl kl mm ij ijkl kl
ij

Y E E
σψρ ε ε χ ε δ δ

ϕ σ

−
− −

−

∂ ⎛ ⎞= − = − −⎜ ⎟∂ ⎝ ⎠
 (49) 

Since the magnitudes of the damage thermodynamic conjugate forces Y + and Y −  are measures of the susceptibility 
of the material to damage, the damage energy release rates Y ±  are therefore used to define the damage criteria g ±  in 
tension or compression, respectively.  

The plastic part of the HFE is postulated to be a function of the plastic variables κ +  and κ −  in the following form: 

2
0 0

1 1( ) exp( )
2

p f h f Qρψ κ κ κ κ ω κ
ω

+ + + − − − −⎛ ⎞= + + + + −⎜ ⎟
⎝ ⎠

 (50) 

where 
0f
+  and 

0f
−  are the uniaxial tensile and compressive yield stresses, respectively. The hardening parameters κ +  

and κ −  are introduced as the equivalent plastic strains under tension and compression, respectively, defined as: 

0

t
dtκ κ+ += ∫   (51) 

0

t
dtκ κ− −= ∫   (52) 

where κ +  and κ −  are the tensile and compressive equivalent plastic strain rates, respectively, which are assumed to be 
evaluated according to the following expressions (Lee and Fenves, 1998): 

max
ˆˆ( ) p

irκ σ ε+ =   (53) 

min
ˆˆ(1 ( )) p

irκ σ ε− = − −   (54) 

where max
ˆ pε  and min

ˆ pε  are the maximum and minimum eigenvalues of the plastic strain rate tensor p
ijε  such that 

1 2 3
ˆ ˆ ˆp p pε ε ε> >  and 

max 1
ˆ ˆp pε ε=  and 

min 3
ˆ ˆp pε ε= . It should be mentioned here that the procedure for obtaining the 

eigenvalues of a second-order tensor (e.g. stress or strain) is a built-in function in ABAQUS readily available for the 
UMAT subroutine. Under uniaxial loading, these eigenvalues reduce to 

max 11
ˆ p pε ε=  in tension and 

m in 3 3
ˆ p pε ε=  in 

compression. The dimensionless parameter ˆ( )ir σ  is a weight factor ˆ0 ( ) 1ir σ≤ ≤  depending on the effective principal 
stresses ˆ

iσ  ( 1, 2,3i = ) and is defined as follows (Lee and Fenves, 1998): 

3 3

1 1

ˆ ˆ ˆ( )i i i
i i

r σ σ σ
= =

= ∑ ∑   (55) 
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The symbol  is the Macauley bracket, defined as 1
2 ( )x x x= + .  Note that ˆ( )ir σ  is equal to one if all the 

eigenstresses ˆ
iσ  are positive and accordingly equal to zero if they are all negative. The parameters Q  and ω  are 

material constants related to the isotropic hardening function of the material.   
Substituting Eq. (50) into Eqs. (22)a and (22)b yields the following expressions for the plasticity conjugate forces c+  

and c−  (the tensile and compressive hardening functions): 

0

p

c f hψρ κ
κ

+ + +
+

∂
= = +

∂
  (56) 

and 

0 1 exp( )
p

c f Qψρ ωκ
κ

− − −
−

∂ ⎡ ⎤= = + − −⎣ ⎦∂
  (57) 

such that by taking the time derivative of the above two expressions, one can easily obtain the following evolution 
equations of the hardening functions  c+  and c−  in terms of the plastic internal state variables κ +  and κ − : 

c hκ+ +=   (58) 

( ic Q cω κ− − −= − )   (59) 

Equation (59) can be obtained by realizing that the exponential term, exp( )ωκ −− , in the rate equation,  

( )exp( )c Qω ωκ κ− − −= − ,   can be replaced by the following term, exp( )ω κ −− =  01 1 ic f c
Q Q

− − −−
− = − , obtained from 

rearranging Eq. (57).  
 
5.   Plasticity Formulation 
 

In this section, the effective stress space plasticity and its components will be discussed. Owing to the coupling 
between the damage evolutions and the plastic flow in the elastic plastic damage models, the so-called (effective stress 
space plasticity) was introduced by Ju (1989). In this approach the effective (undamaged) configuration is used in order 
to establish the evolution laws for the plastic strains governing the plastic irreversible behavior in the material (Wu et. 
al., 2006). To determine the required effective stress tensor

ijσ , the evolution law for the irreversible plastic strains 
tensor p

ijε  has to be established first. The additive decomposition of the effective total strain tensor into elastic and 
plastic parts is assumed, Eq. (1). An effective stress plasticity yield criterion with multiple hardening rules is used along 
with a non-associative flow rule. Both take into account the dilatation effect of concrete materials. A Kuhn-Tucker 
consistency condition is applied to obtain the evolution of the magnitude of plastic strains.   

A crucial component of any material model that involves plasticity theory is the yield surface/criterion. This 
criterion should address and model the experimentally observed non-symmetrical behavior of concrete under tensile and 
compressive loadings. Assuming the same yield behavior for both tension and compression in concrete materials leads 
to over/under estimation of plastic deformations (Lubliner et. al., 1989). The yield criterion adopted in this work was 
first introduced in the Barcelona model by Lubliner et. al. (1989), and later modified by Lee and Fenves (1998, 2001) 
and Wu et. al. (2006). These works reported that the yield criterion is successful in simulating the concrete behavior 
under uniaxial, biaxial, multiaxial, and cyclic loading. This criterion is given in the effective stress space and expressed 
using the undamaged configuration parameters as follows: 

( )2 1 m ax m ax
ˆ ˆ3 ( )H ( ) 1 ( ) 0f J I cα β κ σ σ α κ± −= + + − − =−  (60) 

where 
2 / 2ij ijJ s s=  is the second-invariant of the effective deviatoric stress / 3ij ij kk ijs σ σ δ= − , 

1 kkI σ=  is the first-
invariant of the effective stress ijσ ,  κ ±  denote a suitable set of plastic variables (Wu et. al., 2006) given as the 
equivalent plastic strains defined in Eqs. (53) and (54), 

max
ˆH( )σ  is the Heaviside step function defined in Eq.(31), and 

maxσ̂  is the maximum principal stress.  
The parameter α  is a dimensionless constant given by Lubliner et. al. (1989) as follows: 
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0 0

0 0

( / ) 1
2( / ) 1

b

b

f f
f f

α
− −

− −

−
=

−
  (61) 

and the parameter β , defined as  a constant in the Barcelona model, was later modified by Lee and Fenves (1998), and 
given as a dimensionless function of the tensile and compressive cohesions c±  (hardening internal state variables) in the 
following form:  

( )( ) (1 ) (1 )
( )

c
c

κβ κ α α
κ

−
±

+= − − +
−

+
  (62) 

where 
0bf
−  and 

0f
−  are the initial equibiaxial and uniaxial compressive yield stresses, respectively. Experimental values 

of the ratio 
0 0/bf f− −  lie between 1.10 – 1.20 (Wu et. al., 2006); yielding α  to be between 0.08 – 0.14. For further details 

about the derivation of both parameters, α  and β , the reader is referred to Lubliner et. al. (1989). 
The cohesion parameters,  c+  and c− , denote evolution stresses (positive quantities) in the effective stress space due 

to plastic hardening under uniaxial tension and compression, respectively. They are defined as cohesion parameters due 
to the fact that concrete material behavior resembles that of a frictional material with cohesion (Lubliner et. al., 1989). 
Since the concrete behavior in compression is more of a ductile behavior, the compressive isotropic hardening function 
c−  is defined by the following exponential law: 

0( ) 1 exp( )c f Qκ ω κ− − ⎡ ⎤= + − −⎣ ⎦
− −   (63) 

where Q  and ω  are material constants characterizing the saturated stress and the rate of saturation, respectively. On the 
other hand, a linear expression is assumed for the tensile hardening function c+  such that: 

0( )c f hκ κ+ += ++ +   (64) 

where h  is a material constant obtained from the uniaxial tensile stress-strain diagram.  The evolution of the hardening 
parameters was shown in Eqs. (58) and (59). 

      The flow rule gives the relation between the plastic flow direction and the plastic strain rate. A non-associated 
flow rule means that the yield function f  and the plastic potential pF  do not coincide, and therefore, the direction of 
the plastic flow is not normal to the yield surface. This is important for realistic modeling of the volumetric expansion 
(dilatancy) under compression for frictional materials such as concrete (see Cervenka and Papanikolaou, 2008). Using 
an associated flow rule for the type of yield surface shown in Eq. (60) gives an unrealistically high volumetric 
expansion in compression, which leads in some cases to an overestimated strength - peak stress (Chen and Han, 1988). 
Therefore, the shape of the concrete loading surface at any given point in a given loading state should be obtained by 
using non-associative plasticity. The plastic strain rate can be written in terms of the effective stress 

ijσ  as: 

p
p

ij
ij

Fε λ
σ

∂
=

∂
  (65) 

where λ  is the plastic flow parameter (consistency factor) known as the Lagrangian multiplier, which can be obtained 
using the plasticity consistency condition, and the plastic potential function pF  takes the following Drucker-Prager 
format as given in Lee and Fenves (1998): 

2 13p pF J Iα= +   (66) 

such that: 

2

3
2 3

p
ij p

ij
ij

sF
J

α δ
σ

∂
= +

∂
  (67) 

where pα  is a parameter chosen to provide proper dilatancy with common range between 0.2 and 0.3 for concrete (Lee 
and Fenves, 1998; Wu et. al., 2006). 

The plasticity consistency condition can be obtained by taking the time derivative of the plasticity yield 
function, 0f = , and satisfying the following Kuhn-Tucker loading/unloading conditions:  
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0, 0 0

0 0

0 0 ( )

0 0 0 ( )

0 , 0 0 ( )

0 , 0 0 ( )

p p

p

p

p

p

p

KuhnTucker f f

Consistency f f

f then elastic region

f and f then elastic unloading

f f and neutral loading

f f and plasticity

λ λ

λ

λ

λ

λ

λ

≤ ≥ → =

= → =

< =

= < =

= = =

= = >

 (68) 

 
This concludes the plastic formulation for the present model. The damage formulation is discussed next where the 

tensile and compressive damage surfaces are defined. 
 
 

6.   Damage Formulation 
 
The isotropic damage in this work is responsible for the softening response and the degradation in the elastic 

stiffness. The tensile and compressive damage surfaces and their hardening functions will be presented first, followed 
by a brief discussion of the damage consistency conditions.  

To determine stress states during a damaging process from the thermodynamic constitutive relations, Eqs. (26), (28)
b and (28)c, tensile and compressive damage surfaces and their evolution laws have to be specified. Referring to the 
definitions of a yield function and the plastic flow rule in plasticity theory, Tao and Phillps (2005) defined for an 
isothermal process the following two damage surfaces g ±  as functions of the damage thermodynamic conjugate forces 

ijY ±  and the scalar damage parameters ϕ ± , with a similar form to that of La Borderie et. al. (1992): 

0 0g Y Y Z± ± ± ±= − − ≤   (no mixing ± )  (69) 

where 0Y ±  are initial damage thresholds (tension and compression) which govern the onset of tensile or compressive 
damage, respectively. As damage progresses, initial damage surfaces change by means of evolution laws defined by 
hardening/softening parameters Z ± . These paramters Z ±  can be expressed mathematically in different forms, such as 
polynomials, power and exponential functions, etc. Amongst them power and exponential functions have the best match 
for the shapes of loading curves of concrete (Lubliner et. al., 1989; Lee and Fenves, 1998; Nechnech et. al., 2002; Tao 
and Phillips, 2005; Wu et. al., 2006 and others). Tao and Phillips (2005) assumed that the softening of damage surfaces 
follow a power law in the form of: 

1

1
1

b
Z

a
ϕ

ϕ

±±
±

± ±

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

  (70) 

in which a±  and b±  are four material constants to be calibrated by means of uniaxial tensile and compressive 
experiments of concrete. Tao and Phillips (2005) studied the effects of a± and  b±  on  Z ±  as damage progress. They 
showed that the shape of damage surface varies with b± , whilst a±  determine the magnitude of Z ± . In other words, 
parameters a±  mainly dominate the magnitude of damage surfaces with units of MPa 1− , whilstb± , being dimensionless 
parameters, influence generally the characteristics of softening/hardening (see Figure 1). The same trend was observed 
in this work as will be shown in the verification section. Tao and Phillips (2005) claimed that a proper selection of 
parameters a±  and b±  tailors Z ±  to the demands of different types of concrete and their corresponding tensile and 
compressive strengths without the use of any regularization techniques. Other researchers that used Eq. (69) to model 
their isotropic damage criteria include Salari et. al. (2004), Shao et.  al. (2006), and Grassl and Jirasek (2006). All three 
used single isotropic damage variable ϕ  and thus, a single damage criterion.  
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Figure 1: Effect of material parameters a±  and  b±  on model behavior 

 
      Figure 2: ( )pσ ε− relation for uniaxial test, a) tension, b) compression 

In this work, and in an effort to reduce the sensitivity of the FE analysis of concrete to the refinement of the FE 
meshes, the damage magnitude parameters a±   are adjusted to include dimensionless embedded coefficients γ ±  that are 
related to the fracture energies in tension and compression, 

fG±  (see Figure 2), and to the (geometrical) characteristic 
length, , of the applied FE mesh obtained from ABAQUS. These γ ±  coefficients are given as (Oliver et. al., 1990; 
Labadi and Hannachi, 2005; Wu. et. al., 2006): 

1

2

1
2

f

o

G E
f

γ
−±

±
±

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
  (71) 

A stress point in principal stress space can be either within or on the current damage surface. When within the 
damage surface, being tensile or compressive, the stress point may be loading, but it has not violated the current damage 
criterion yet. Once it is on the damage surface, two damage states are possible. One may be unloading or neutral 
loading, having 0ϕ ± = . The other is loading, accompanied by the evolution of damage and defined as 0ϕ ± > . 
Mathematically, the above description is expressed as: 

0 0;
0 0 0;
0 0 0

If g then
If g and g then
If g and g then

ϕ

ϕ

ϕ

± ±

± ± ±

± ± ±

< =

= ≤ =

= = >

 (72) 

The above conditions are damage extension of the classical plasticity Kuhn–Tucker conditions (Voyiadjis and 
Kattan, 1992). 

 
7.  The Consistent Elastic – Plastic – Damage Tangent Operator 
 

For the global equilibrium, solved by ABAQUS according to a Newton–Raphson algorithm, a consistent tangent 
operator is computed according to the procedures described in Jason et. al. (2006) and Wu et. al. (2006). It is formulated 



 
 
 
 

 Voyiadjis et al. / International Journal of Structural Changes In Solids, 1 (2009) 
 

 

44 

by applying the derivative of the constitutive equation, Eq.(7), with respect to the strain tensor as follows (all 
parameters are at the (n+1) state): 

(1 )ij ij
ij

kl kl kl

σ σ
σ

ε ε ε
∂ ∂ ∂Φ

= − Φ −
∂ ∂ ∂

  (73) 

where the elasto-plastic consistent tangent operator appears in the first term on the right hand side of this equation. 
Since damage depends on the elastic strain only, 

klε
∂Φ
∂

 can be written as: 

e
mn

e
kl mn kl

ε
ε ε ε

∂∂Φ ∂Φ
=

∂ ∂ ∂
  (74) 

and the derivative of the elastic strain tensor with respect to the total strain tensor can be obtained by taking the 
derivative of the constitutive equation, Eq. (3), with respect to the total strain tensor as follows: 

( )1
e

pqmn
mnpq

kl kl

E
σε

ε ε
− ∂∂

=
∂ ∂

  (75) 

Substituting Eqs. (74) and (75) into Eq. (73), the following arrangement can be obtained: 

( )1(1 )ij ij pq
ije mnpq

kl kl mn kl

E
σ σ σ

σ
ε ε ε ε

−∂ ∂ ∂∂Φ
= − Φ −

∂ ∂ ∂ ∂
 

 (76) 
After some tensorial manipulations, Eq. Error! Reference source not found. can be given as: 

( )1(1 )ij pq
pi qj ije mnpq

kl mn kl

E
σ σ

δ δ σ
ε ε ε

−∂ ∂⎡ ⎤∂Φ
= − Φ −⎢ ⎥∂ ∂ ∂⎣ ⎦

 (76) 

Equation (76) is equivalent in format to that given by Wu et. al. (2006) as follows: 

( ) ( ) ( )1

R
I

ij pq
pi qj pi qj ije mnpq

kl mn kl

E
ω

σ σ
δ δ δ δ σ

ε ε ε
−

⎡ ⎤
⎢ ⎥∂ ∂⎛ ⎞∂Φ

= − Φ −⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

 (77) 

In order to obtain ij

kl

σ
ε

∂

∂
, the derivative of the damage variable with respect to the elastic strain tensor, 

e
mnε

∂Φ
∂

, needs to 

be evaluated. This can be accomplished by considering the derivative of Eq. (8) as follows:   

ij ij
e e e
mn mn mnij ij

σ σϕ ϕ
ε ε εσ σ

+ −+ −∂Φ ∂ ∂
= +

∂ ∂ ∂
  (78) 

Note that the stresses in Eq. (8) are used to obtain scalar ratios that are used as weighing factors; therefore, they are 
not considered as contributing components to the foregoing derivative.   

Substituting Eq. (70) into Eq. (69), explicit expressions for the damage variables ( )ϕ ±  satisfying the consistency 
conditions can be obtained as follows: 

( )
( ) ( )

0

0 0

11
1 1

b

b b

a Y Y

a Y Y a Y Y
ϕ

±

± ±

± ± ±

±

± ± ± ± ± ±

⎡ ⎤−⎣ ⎦= = −
⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

 (79) 

It can be seen, using Eq. (79), that the damage variables ϕ ±  are functions of the thermodynamic conjugate forces 
Y ± , respectively, and Y ±  are functions of the elastic strain tensor e

mnε , Eqs. (48) and (49), such that the following 
expression can be obtained: 
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e e
mn mn

Y
Y

ϕ ϕ
ε ε

± ± ±

±

∂ ∂ ∂
=

∂ ∂ ∂
  (80) 

The first term on the right hand side is obtained using Eq. (79) and given as:  

( )
( )

( ) 1

0

2

01

b

b

a b a Y Y

Y
a Y Y

ϕ
±

±

−
± ± ± ± ±±

±
± ± ±

⎡ ⎤−∂ ⎣ ⎦=
∂ ⎛ ⎞⎡ ⎤+ −⎜ ⎟⎣ ⎦⎝ ⎠

  (81) 

and the second term is obtained by applying the linearization technique given by (Simo and Hugues, 1998) using Eqs. 
(48) and (49) as follows: 

( )
2

2

1 (1 )
9

1 exp( ) exp( ) 11 ( )
2 91 exp( )

ij e e
mnkl kl pp mn ij ijkl kl

ij
e
mn ij e

qq ij ijkl kl
ij

E E
Y

c dY cdY dY E
cY dY

σ
ε χ ε δ δ δ

σ
ε σ

ε δ δ
σ

±
±

±

± ± ± ±

+ ±

⎛ ⎞− −⎜ ⎟
⎝ ⎠∂

=
∂ ⎡ ⎤− − −⎢ ⎥−

⎢ ⎥+ −⎣ ⎦

 (82) 

where the derivatives of χ ±  with respect to the elastic strain tensor were expressed as follows: 

e e
mn mn

Y
Y

χ χ
ε ε

± ± ±

±

∂ ∂ ∂
=

∂ ∂ ∂
   (83) 

The effective consistent tangent operator ij

kl

σ
ε

∂

∂
 can be obtained using the linearization technique given in the 

references mentioned above and is stated here as given by Wu et. al. (2006) as: 

( )
1

2
1

p p p
ij p

ijkl
kl ij kl ij kl

F FE
σ λ λ
ε σ σ σ σ

−

−
⎛ ⎞∂ ∂ ∂Δ ∂

= + + Δ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (84) 

where 
p

kl

λ
σ

∂Δ
∂

 is given as: 

( ) ˆ/
ˆ

p
kl

p
kl p i

p p
i

f

f

σλ
σ κ λ σκ λ

κ λ λσ

±±

±

∂
∂∂Δ

= −
∂ ⎛ ⎞∂ Δ Δ ∂∂ Δ⎜ ⎟+ Δ

⎜ ⎟∂ Δ ∂Δ∂⎝ ⎠

 (85) 

where max
ˆ ˆ

iσ σ= when κ κ +=  and min
ˆ ˆ

iσ σ= when κ κ −= . 
 
8.   Verification of the Proposed Model 
 

This section is dedicated to the numerical validation of the concrete model. The numerical algorithm of the proposed 
model, discussed in part II of this work, is implemented in the non-linear FE code ABAQUS via the user material 
subroutine UMAT. Several analytical examples are provided here in order to investigate the capability, applicability, 
and effectiveness of the proposed elastic-plastic-damage model in capturing material behavior in both tension and 
compression under uniaxial and bi-axial loadings. The results obtained by the proposed model are compared with 
corresponding experimental results to evaluate the model’s performance. Tensile and compressive verification tests 
under unaxial loading are demonstrated first, followed by biaxial tests in tension and compression.  
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8.1. Identification of the Proposed Model’s Parameters  
 
The proposed model contains 17 parameters: two elastic constants for the undamaged material ( E  and ν ), five 

parameters for the characterization of plasticity (α , pα , h , Q  and ω ), eight parameters for damage characterization 
( a± , b± , 

0Y ± , c  and d ), and two parameters for the fracture energy of concrete under tension and compression ( fG± ). 
All the parameters can be identified from a series of tensile and compressive experimental tests (Tao and Phillips, 2005 
and Wu et. al., 2006). Since the elastic-plastic-damage model presented in this work is a combination of the effective 
elastic-plastic constitutive relations presented by (Lee and Fenves, 1998 and Wu et. al., 2006) and the damage model 
presented by (Tao and Phillips, 2005); the model parameters used in these works are used here with some adjustment to 
the damage parameters in order to take into consideration the plastic effect introduced in this work. 

The initial elastic constants are determined from the linear part of stress–strain curves before the initiation of 
damage and plastic deformation (Shao et.  al., 2006). For concrete materials, these averaged elastic parameters are 
documented in literature. The initial damage thresholds in tension and compression, 0Y ± , can be determined by locating 
the onset points of variation of elastic properties in the unloading paths (Tao and Phillips, 2005). As the damage 
evolution is coupled with plastic flow, it seems to be reasonable to consider that the damage initiation occurs at the 
same time as the plastic initiation under tensile loading. They are identified as the end of the linear part of the stress–
strain curves in uniaxial tensile tests. Under compression, however damage start at an earlier stage than plasticity 
depending on the initial damage threshold

0Y − . The plastic hardening parameters (Q  andω ) are related to the saturated 
stress in the plastic regime and the rate of saturation. 
 Lee and Fenves (1998) and Wu et. al. (2006) used the following values for the elastic-plastic material 
parameters: Poisson’s ratio ν  = 0.20; the equibiaxial to uniaxial compressive strength ratio 

0 0/bf f− − = 1.16, resulting 
with α  = 0.12 and the dilatancy parameter pα  was chosen as 0.20. Tao and Phillips, (2005), used the following values 
for the material parameters used to split the strain tensor into hydrostatic and deviatoric compoenets:  2.0c =  
MPa 1− and 0.7d =  MPa 1− . These values are used throughout this work.  

 

 
Figure 3: (a-d) Quadrilateral finite elements (CPS4 or CPE4) under uniaxial (a - tension, c - compression) 

and Biaxial (b - tension, d- compression) 
 
8.2. Monotonic Uniaxial Tensile Test 

In the first example of uniaxial tension test, the following material properties are used (Lee and Fenves, 1998; Tao 
and Phillips, 2005; Wu et. al., 2006; Nguyen and Houlsby, 2008a,b) in order to compare the results with the 
experimental work of Gopalaratnam and Shah (1985): 4E  =  3 .1 1 0×  MPa, 

0f
+  = 3.48 MPa and 

fG+  = 40 N/m. This test 
is conducted using a single quadrilateral finite element (82.6 mm x 82.6 mm) shown in Figure 3a to comply with the 
results of the studies mentioned above. The model’s plastic hardening parameter is given here for the tensile case as: 

42.5 10h = ×  MPa. 
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a) Stress-Strain curve      b) Strain .vs. Damage Variable 

Figure 4: (a,b) The behavior of the proposed model under uniaxial tension 

 

 
a) Effect of h       b) Effect of a+

 
 

 
c) Effect of  b+

      d) Effect of 0Y +
 

Figure 5: (a-d) Effect of material parameters on the model response in tension 
 

The model’s damage parameters are provided by Tao and Phillips, (2005) as: 1.2b + = , 4
0 1.9 10Y + −= ×  MPa. Only 

parameter 314 10a + = ×  MPa 1−  was adjusted to account for the plastic effect introduced in this work. Note that the 
uniaxial tests (in tension and compression) were used to determine the values of the material parameters to be used 
along with the fracture energy related factors γ ±  in further examples. The use of the fracture energy factors  γ ±  in the 
verification problems is arbitrary and redundant as explained in (Nguyen and Houlsby, 2008a,b). 
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The stress-strain response is plotted in Figure 4a while damage evolution is plotted in Figure 4b. It can be observed 
from Figure 4a that the predictions obtained from the numerical model agree well with the experimental data 
(Gopalaratnam and Shah, 1985), especially for the post-peak nonlinear softening branches 

The effect of the model parameters mentioned above on the stress–strain response and damage evolution in tension 
is shown in Figure 5a-d. Each model parameter in turn is varied, while others are kept fixed, to show the corresponding 
effect on the stress–strain curve and damage evolution. 

Note in Figure 5a, that as the plastic hardening parameter h  decreases, the plastic behavior becomes more dominant 
than the elastic one, resulting in smaller elastic strains, which affect the magnitude of the tensile damage release rate Y +  
and therefore negatively affect the damage growth. This shows the coupled effect of damage and plasticity on the 
predicted behavior. 

    
8.3. Monotonic Uniaxial Compressive Test 
 

The model’s ability to reproduce the concrete behavior under monotonic uniaxial compression is verified here and 
compared to the experimental results of Karsan and Jirsa (1969). The material properties used here are (Lee and Fenves, 
1998, Tao and Phillips, 2005; Wu et. al., 2006; Nguyen and Houlsby, 2008a,b): 4E = 3.1 10×  MPa, 0f

− =10.2 MPa, '
cf = 

27.6 MPa and 
fG−  = 5690 N/m. The test is conducted using a single quadrilateral finite element (82.6 mm x 82.6 mm) 

shown in Figure 3c. The model’s plastic hardening parameters are given here for the compressive case as: 32.5 10Q = ×  
MPa and 200ω = . 

The model’s damage parameters are provided as: 22a− =  MPa 1− , 0.98b − = , 4
0 3.0 10Y − −= ×  MPa 1− . The 

model’s parameters a−  and b−  were adjusted in order to account for the introduction of the plastic effect in this work. 
The stress-strain response is plotted in Figure 6a while damage evolution is plotted in Figure 6b. Whether in the 
hardening or in the softening regimes, the overall nonlinear numerical performance predicted by the model and the 
experimentally obtained stress–strain curve are rather close. 

The effect of model parameters on the stress–strain response and damage evolution in compression is shown in the 
Figure 7. Each model parameter in turn is varied, while others are kept fixed, to show the corresponding effect on the 
stress–strain curve and damage evolution; Figure 7a-d. 

Figures 7b shows a trend similar to that observed in Figure 5a. As the magnitudes of the hardening parameters 
increase, the damage growth and thus the strain softening is more pronounced up to the point where the exponential 
hardening function becomes saturated. This again shows the coupled effect of damage and plasticity on the response of 
the proposed model.  

 
 

 
a) Stress - Strain curve                b) Strain .vs. Damage Variable 

Figure 6: (a,b) The behavior of the proposed model under uniaxial Compression 
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a) Effect of ω       b) Effect of Q  

 

 
  c) Effect of a−      d) Effect of b−  
 

 
e) Effect of 

0Y −  
Figure 7: (a-e) Effect of material parameters on the model response in compression 

 
 
8.4. Monotonic Biaxial Tests 
 

In this section, the performance of the proposed model subjected to combined loading situations (biaxial tension, 
biaxial compression, and biaxial tension – compression) is investigated. 

In the biaxial tension case, the same material parameters as those for the uniaxial tension test are used to analyze the 
Quadrilateral FE setup shown in Figure 3b. The numerical results are compared to the experimental ones reported by 
Kupfer et. al. (1969). In Figure 8a, the ordinate represents the normalized stress 

11σ  in terms of the compressive strength 
'

cf  = 27.6 MPa for the case (
22 11/ 1R σ σ= = ). Note that the results of Kupfer et. al.  (1969) cover only the range of 

( '
110 / 0 .09cfσ≤ ≤ ). The results are in good agreement. The full range of the stress ratio ( 0 1R≤ ≤ ) is investigated 

next. 
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a) Stress - Strain curve    b) Strain .vs. Damage Variable 

Figure 8: (a,b) The behavior of the proposed model under biaxial tension (
11 22σ σ= ) 

   
Table 1. Biaxial Tension Test 

11ε  22ε  11σ  22σ  '
11 / cfσ  '

22 / cfσ  
0.0006 0 3.48573 0 0.126295 0 
0.0006 0.0001 3.48279 1.39312 0.126188 0.050475 
0.0006 0.0002 3.39821 1.82981 0.123124 0.066297 
0.0006 0.0003 3.29641 2.19761 0.119435 0.079624 
0.0006 0.0004 3.14892 2.47415 0.114091 0.089643 
0.0006 0.0005 2.94521 2.64054 0.106711 0.095672 
0.0006 0.0006 2.80792 2.80792 0.101736 0.101736 
0.0005 0.0006 2.64054 2.94521 0.095672 0.106711 
0.0004 0.0006 2.47415 3.14892 0.089643 0.114091 
0.0003 0.0006 2.19761 3.29641 0.079624 0.119435 
0.0002 0.0006 1.82981 3.39821 0.066297 0.123124 
0.0001 0.0006 1.39312 3.48279 0.050475 0.126188 

0 0.0006 0 3.48573 0 0.126295 
 
During the biaxial tension test, the total displacements in the horizontal and vertical directions of the setup shown in 

Figure 3b are specified in the input file. In order to retrieve the full spectrum of stress ratios ( 0 1R≤ ≤ ), the 
displacement in one direction is fixed while the displacement in the other direction is incremented during multiple runs 
of the input file. The results are shown in Table 1. 

 
Figure 9: The biaxial tensile quadrant of the failure surface of concrete 
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The last two columns of Table 1 are plotted against each other to obtain Figure 9 showing the tensile quadrant of the 
biaxial failure surface of concrete. The experimental values were obtained by Kupfer et. al. (1969) and used by Lee and 
Fenves (1998) and Wu et. al. (2006). 

The tensile biaxial results are compared to those of the uniaxial tension test. Figure 10a shows that under the biaxial 
state ( 11 22σ σ= ), the model predicts higher damage growth rate than under uniaxial tension. This is also obvious from 
Figure 10b, where damage starts at an earlier stage and grows at a higher rate. 

 

 
a) Stress - Strain curves    b) Strain .vs. Damage Variables 

Figure10: a, b Comparison of the uniaxial and biaxial (
11 22σ σ= ) tension tests 

In the case of biaxial compression, the proposed model in its given form is not capable of capturing the trend 
observed experimentally. A modification that had to be applied to the proposed model in order to enhance its 
performance under biaxial compression is discussed next. This modification is easily incorporated into the UMAT file 
using proper IF statements. Experimental results (e.g. Kupfer et. al. (1969)) showed an increase in concrete compressive 
strength as the biaxial stress ratio (

22 11/R σ σ= ) increases up to the point where the strength in one direction is 1.3 '
cf , 

followed by a reduction in strength that reaches 1.16 '
cf  when 1.0R =  (see Figure 11). This is a result of the 

consolidation of concrete under biaxial compressive loading which leads to reduced damage growth (Wu et. al., 2006). 
This experimental observation is modeled here through the reduction of the damage encountered by concrete as the 
stress ratio R  is increased. Since the compressive damage parameter a−  is responsible for the magnitude of damage 
endured by concrete as was shown in Figure 7c, this parameter is related to the biaxial strain ratio ( 22 11/ε ε ) in an effort 
to account for damage reduction during biaxial compressive loading in a displacement-controlled environment. The 
same material parameters as those used for the uniaxial compressive test are used here with 0f

− =15.2 MPa (Wu et. al., 
2006). The FE setup shown in Figure 3d was used.  

 

Figure 11: The biaxial compressive quadrant of concrete 
envelop (Kupfer et. al. 1969) 

Figure 12: The behavior of the proposed model under 
biaxial compression (

11 22σ σ= ) 
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Under Uniaxial compressive loading, the damage parameter 22ua a− −= =  MPa 1−  was shown to give good 

experimental fit (Figure 6a, ' 27.6cf =  MPa). Whereas, under biaxial compression loading with a stress ratio of 1R = , 

11eba a− −= =  MPa 1−  was observed to give acceptable results ( ' 32 (1.16*27.6)bcf =  MPa) as shown in Figure 12. The 
experimental results are those of Kupfer et. al. (1969). 

It is worth mentioning here that the relation between damage growth and the damage parameter a−  is a proportional 
relation; the higher the value of a− ,  the higher is the magnitude of damage . For example, if the damage magnitude is 
fixed at 0.3Φ = ,  and a−  is increased from 11 to 22 MPa 1− , Figure 13a can be obtained to show the  damage 
hardening function Z −  (MPa) plotted against a− . Furthermore, if some arbitrary value is assigned to the damage 
release rate, say 0.01Y − = MPa,  and the value of  a−  is increased from 11 to 22 MPa 1− again, then damage growth can 
be potted against a−  as shown in Figure 13b. 

 

 
a) Damage hardening ( Z − ) .vs. a−    b) Damage growth Φ  .vs. a−  

Figure 13: Relation between damage hardening ( Z − )/growth (Φ ) and the damage hardening parameter a−  
 

      
a) (

22 11/ε ε ) .vs. a−      b) Symmetric half - compressive quadrant 
Figure 14: (a, b) The effect of 

22 11/ε ε   on a− and on the compression quadrant 
 

By checking the biaxial compression stress envelop of concrete, Figure 11, one can easily see that when the stress 
ratio R  is zero, the point on the envelop is (-1, 0) and the consolidation effect doesn’t exist. On the other hand, the 
consolidation effect starts to increase as R moves away from (-1,0) towards higher values of R  up to a certain point 
where the consolidation effect starts to decrease until the stress ratio R =1 is reached. By plotting the values of the 
strain ratio 22 11/ε ε  versus different power evolution equations of the damage parameter a− , it was realized that the 
equation that best describes the evolution of a−  with respect to R is the one given as follows: 

22

11

( )n
u eba a a ε

ε
− − −= −   (86) 
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where 
ua−  and 

eba−  are the compressive uniaxial and equibiaxial calibrated values of the damage parameter a− . Figure 
14a shows different curves for the evolution of  a−  obtained by plotting Eq. (86) over the full range of the strain ratio 

22 11/ε ε  using different values of the power parameter (n). Figure 14b, on the other hand, shows a symmetric half of the 
biaxial compressive quadrant of the concrete envelop. The results in Figure 14b are obtained by varying the horizontal 
and vertical displacements in the input file during multiple runs in order to obtain different stress ratios and their 
corresponding values of the damage variable a− . Table 2 shows the numerical values for the series of runs used to 
obtain the curve representing (n = 1/6), which is the closest fit to experimental results reported by Kupfer et. al., (1969) 
as shown in Figure15. 
 

  Table 2 Biaxial Compression Test (n = 1/6 ) 

22 11/ε ε  
11σ  

22σ  22σ / 11σ  11σ / '
cf  22σ / '

cf  a−  
0 -27.6 0 0 -1 0 22 

0.055 -33.9815 -11.0433 0.32498 -1.23121 -0.40012 15.22063 
0.14 -35.018 -13.9127 0.397301 -1.26877 -0.50408 14.09824 
0.2 -35.3416 -15.9112 0.450212 -1.28049 -0.57649 13.58803 
0.4 -35.297 -21.4989 0.609086 -1.27888 -0.77895 12.55788 
0.6 -34.4252 -25.9382 0.753465 -1.24729 -0.93979 11.89776 
0.8 -33.3097 -29.444 0.883947 -1.20687 -1.06681 11.40158 
0.9 -32.7517 -30.9081 0.94371 -1.18666 -1.11986 11.19147 
1 -32.1874 -32.1874 1 -1.16621 -1.16621 11 

 
In the case of biaxial tension and compression, the model did not fit the experimental results, even with the 

modification used for the biaxial compression case mentioned above. The proposed model underestimates the strength 
of concrete under combined tension and compression (Figure 16). Varying the damage parameters a+  and a−  with the 
strain ratio  22 11/ε ε  did not result in any improvements. This region of the concrete strength envelop still requires 
further research in order for the proposed model to adequately describe the biaxial tensile-compressive behavior of 
concrete. The results shown in Figure 16 were obtained by varying the magnitude of the damage release rates Y ±  to 
account for the different tensile and compressive contributions to damage growth. 

 
 

 
 

     Figure 15: The biaxial compressive quadrant of 
the concrete envelop 

Figure 16: The mixed (tension/compressive) quadrant of the biaxial concrete envelop 
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Figure 17: Tensile, compressive and total damage variables Figure 18: The biaxial strength envelop of concrete 

 
Despite the difference between the numerical and experimental results observed in the mixed quadrants of the 

concrete envelop, it is worth mentioning that the combined damage variable Φ  in these regions is made out of two 
parts, ϕ+  and ϕ − , unlike the other two quadrants (pure tensile or compressive quadrants). These two damage variables, 
ϕ+  andϕ − , are combined using Eq. (8) to obtain the total damage variable Φ  (Figure 17), where the latter is used to 
update the Cauchy stress tensor. Combining the results from different quadrants discussed above, the biaxial strength 
envelop of concrete can be plotted as shown in Figure 18. The experimental results pertain to Kupfer et. al., (1969). 

 
8.5. Three Point Bending Test of a Notched Beam 

 
In this section, the monotonic testing of the damaging process for a single-edge-notched plain concrete beam is 

simulated using experimental data from Malvar and Warren (1988). The square- illustrated in Figure 19a. The following 
material properties are used (Lowes, 1999; Lee and Fenves, 2001): 4E = 2.17 10×  MPa, ' 29.0cf =  MPa, 0f +  = 2.4 
MPa, fG +  = 35 N/m. Two-dimensional cross-section beam, with an initial notch depth of 51 mm, is subjected to three-
point loading test as FE mesh for the symmetric left part of the specimen is shown in Figure 19b. Displacement control 
is used to apply the loading in the simulation.  

Applying the material parameters given above along with the characteristic length of the FE mesh given by 
ABAQUS as ( 312.6e−= m) into Eq. (71), the mesh sensitivity parameter γ +  can be calculated and the adjusted value 

for the damage parameter 1400a + =  MPa 1−  can be obtained. Since the elastic modulus, 4E = 2.17 10×  MPa, in this 
test is lower than that considered in the uniaxial test, the tensile plastic hardening parameter h  is reduced here to 

41.9 10h = ×  MPa to maintain the same ratio ( / Eh ). 

 
a) Geometric layout (unit = mm)     b) 2-D FE mesh 

Figure 19:(a,b) Single-edge-notched beam subjected to three point bending test 

 
In Figure 20, the load versus load-point deflection curve from the simulation is compared with the experimental 

result of Malvar and Warren (1988). Good agreement between the numerical and experimental results is observed, 
which demonstrates the effectiveness of the proposed model.  
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Figure 20: Load versus load-point deflection compared to experimental results 

 
It should be noted here that the non-smoothness of the curve beyond the peak load is a phenomenon frequently 

observed in any numerical simulations that does not involve a regularization technique (Feenstra, 1993; Fichant et. al., 
1999; Lowes, 1999; Tikhomirov and Stein, 2001; Sumarac et. al., 2003; Rabczuk et. al., 2005; He et. al., 2006; Nguyen 
and Houlsby, 2008a,b; Yu et. al., 2008; and others). He et. al. (2006) reported that the load-displacement curve beyond 
the maximum load and during the softening region, may reach a valley which is then followed by a new local peak in 
the next increment. These local peaks if not robustly tolerated and accounted for, will cause the algorithm to diverge.  

The evolution of damage is demonstrated next using the two dimensional FE mesh shown in Figure 19b. By 
applying a displacement control of -0.5 mm to the point of load application through 100 time increments, Figures. 21a-c 
show how damage propagates starting at the tip of the notch working its way toward the top of the cross-section. It 
should be noted here that the effect of the fracture energy parameters on reducing mesh sensitivity of the numerical 
results will be thoroughly investigated and discussed in part II of this work where reinforced concrete beams are studied 
using different mesh refinements.  

 
9.  Conclusions  
 

This study introduces a continuum FE approach that is appropriate for predicting the physical behavior of concrete 
members subjected to short term monotonic loading assuming isothermal conditions. This approach consists of fracture 
energy based damage mechanics and plasticity theory adopted to describe the complex behavior of concrete material in 
structural elements.    

 The proposed material model for concrete is derived using rigorous and consistent thermodynamic formulation. The 
additive decomposition of the Helmholtz free energy concept is used to define the thermodynamic conjugate forces 
associated with the internal state variables, including the damage thermodynamic conjugate forces (damage energy 
release rates). The energy dissipation mechanisms are formulated to satisfy the first inequality of thermodynamics, and 
to postulate the plastic and damage dissipation functions. Three dissipation mechanisms (plasticity, tensile and 
compressive damage) are present to control the dissipation process of the material model. 

 The concrete model is a combination of the generalized effective space plasticity theory and isotropic damage 
theory applied simultaneously under the assumptions of small strains, rate independence, and isothermal conditions. 
The strain equivalence hypothesis is used for the stress mapping/transformation from the effective (undamaged) to the 
damaged configurations. A concrete plasticity yield function with multiple isotropic hardening criteria and a non-
associative plasticity flow rule is adopted to represent the irreversible plastic behavior of concrete. The non-associative 
flow rule includes a hydrostatic term to account for the dilatation effect of concrete materials. On the other hand, two 
damage growth criteria that are based on the hydrostatic-deviatoric sensitive thermodynamic-conjugate forces are used 
to model stiffness degradation and material deterioration in concrete. Two damage variables, tensile and compressive, 
are used to model the different damaging behaviors in concrete. These two damage variables are combined using a 
relation that incorporates the stress tensor and its spectral decomposition into tensile and compressive components. The 
combined damage variable is consequently used to map the stress from the effective to the damaged configuration. 
Fracture energy related coefficients have been defined and incorporated in the damage model to achieve a reasonable 
degree of discretization insensitivity in numerical calculations. Their effect will be demonstrated and studied in part II 
of this work. 
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a) Evolution of damage ( Φ ) at 20 time increments 

 

 
b) Evolution of damage ( Φ ) at 50 time increments 

 

 
c) Evolution of damage ( Φ ) at 100 time increments 

Figure 21: a-c Evolution of damage ( Φ ) at different time increments 
 

 The proposed concrete model is implemented and tested to verify its capability, applicability, and effectiveness in 
capturing the material behavior in both tension and compression under uniaxial and bi-axial loadings. The results 
obtained by the proposed model are compared with corresponding experimental results to evaluate the model’s 
performance. Tensile and compressive verification tests under unaxial loading are demonstrated first, followed by 
biaxial tests in tension and compression. Then a three point bending test of a notched beam is investigated. 

 The numerical results of the verification examples under tensile and compressive unaxial loads demonstrate the 
effectiveness of the model in capturing the uniaxial behavior of concrete. During all stages of loading, the simulated 
results match the experimental ones in terms of physical behavior. The experimentally observed softening branch of the 
stress-strain diagram under uniaxial loading (tension or compression) is reproduced efficiently. 

 Under biaxial tension, the model easily depicts the experimentally observed phenomenon; concrete strength suffers 
a reduction as the biaxial stress ratio is increased. Whereas, under biaxial compression, an additional equation 



 
 
 
 

Voyiadjis et al. / Elastic Plastic and Damage Model for Concrete Materials pt.I 

 

57 

governing the damage variables is introduced in order to account for the strengthening of concrete due to consolidation 
under biaxial compression. This improvement leads to a more efficient numerical representation of the experimental 
results under biaxial compression. 

  The proposed concrete model in its current form is not capable of capturing the experimentally observed behavior 
under combined tensile and compressive loadings. The reduction in compressive strength was not observed numerically 
as the tensile stress is increased and vise versa. Further development of the model is therefore required in these regions 
of loading to enhance the numerically simulated results. 

  When a three point bending test of a single notched concrete beam is investigated, the computational algorithm 
demonstrated robustness in simulating the entire stress-strain diagram of concrete and the evolution of damage. 
Nevertheless, some difficulties are encountered: the non-smoothness in the numerical results beyond the peak point is 
believed to be related to the global equilibrium iterations. Another possible source is the use of non-associative plastic 
flow rule, where the direction of the plastic flow is not normal to the yield surface. It is well documented in literature 
that local damage approaches exhibit mesh sensitivity and non-smooth results in the softening region. Regularization 
methods should be incorporated in order to overcome such drawbacks. 
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