@article{Colón-De La Cruz_Rivera-Casillas_Keen_Lynett_2018, title={NUMERICAL MODELLING OF TSUNAMI INUNUNDATION CONSIDERING THE PRESENCE OF OFFSHORE ISLANDS AND BARRIER REEFS}, volume={1}, url={https://icce-ojs-tamu.tdl.org/icce/article/view/8477}, DOI={10.9753/icce.v36.currents.72}, abstractNote={Advances in computer programming have permitted researchers to predict and visualize how tsunami waves affect coastline areas. Although it’s possible to use numerical model simulations to predict the inundation of tsunamis, the process has some limitations. In order to solve the Boussinesq-type equations for tsunami propagation in the near-shore, it typically requires hundreds of hours of computation time and/or multiple CPUs. (Tavakkol and Lynett, 2017). Recently the University of Southern California developed a numerical model called Celeris, which can solve the Boussinesq-type equations faster than real time. The numerical model can run with minimum preparations on an average-user laptop and is able to provide results of wave inundation in a matter of seconds (Tavakkol and Lynett, 2017). The purpose of this research is to validate the results of wave inundation provided by Celeris and to study how reefs affect the inundation in the shoreline. If Celeris is validated, it could be used to study how to reduce the impact of tsunamis in the coast, explore the possibilities of using reefs to dissipate the energy of waves, improve evacuation routes, etc.}, number={36}, journal={Coastal Engineering Proceedings}, author={Colón-De La Cruz, Héctor and Rivera-Casillas, Peter and Keen, Adam and Lynett, Patrick J.}, year={2018}, month={Dec.}, pages={currents.72} }