INTRODUCTION AND MOTIVATION
Breakwaters are subject to coastal storms but also to climate change. The stochastic nature of both wave loading and structural response is different nowadays (and in the near future) from those at the time they were designed and the main investments are related to conservation and maintenance. Therefore, an updated risk analysis is needed in order to decide about adaptation or mitigation actions.

When evaluating risks, several elements should be included:
- the probability of occurrence of different failure modes,
- the intensity of the failure,
- the vulnerability of the structure and the activities that take place on and/or at the lee of the structure and, finally,
- the exposure (these last two being the possible consequences of the failure with the given intensity)

All these 4 terms combined provide risks levels ranging from no-risk to very high risk.

Once all the risks are listed and classified, it is possible to proceed to the decision making process among several alternatives.

Palma Port is located in the Mediterranean Sea and it is the biggest of the five ports managed by the Port Authority of the Balearic Islands.

Dique del Oeste is located at the Southern end of the port.

RESULTS
The methodology has been applied to Dique del Oeste, a rubble-mound breakwater located in the Port of Palma (Spain) for different scenarios (met-ocean variables) and different geometries (assuming changes in geometry are adaptation or mitigation alternatives). The latter cases provide information on how efficient the alternatives are for risk reduction by comparing their risk levels with the unaltered alternative.

ACKNOWLEDGEMENTS
The authors are indebted to the Port Authority of the Balearic Islands.

REFERENCES