EXPLORING THE INFLUENCE OF LAND RECLAMATION ON SEDIMENT GRAIN SIZE DISTRIBUTION ON TIDAL FLATS: A NUMERICAL STUDY
ICCE 2018 Cover Image
PDF

How to Cite

Chen, L., Zhou, Z., Xu, M., Xu, F., Tao, J., & Zhang, C. (2018). EXPLORING THE INFLUENCE OF LAND RECLAMATION ON SEDIMENT GRAIN SIZE DISTRIBUTION ON TIDAL FLATS: A NUMERICAL STUDY. Coastal Engineering Proceedings, 1(36), papers.85. https://doi.org/10.9753/icce.v36.papers.85

Abstract

We explore the effects of land reclamation on the morphological evolution and sediment sorting on a tidal flat using a state-of-the-art numerical model (Delft3D). Consistent with existing field observations and analytical theories, model results indicate that the longitudinal profile adjusts itself converging to new equilibrium states (narrower and steeper) after a series of reclamations. Relatively fine sediments deposit adjacent to the sea dike, due to the flood-dominated tidal hydrodynamics. The amount of sediment deposition in front of the dike peaks when the dike is designed at mean sea level. After sequential reclamations, sediment grain size appears to be coarser offshore and on the tidal flat. Overall, this study suggests that land reclamation can lead to the readjustment of tidal flat profile shapes and coarsening of sediment grain size, which should be taken into account when reclamation projects are planned.
https://doi.org/10.9753/icce.v36.papers.85
PDF

References

Amos, C.L., 1995. Siliciclastic tidal flats. In: G.M.E. Perillo (G.M.E. Perillo)^(G.M.E. Perillos)|,*.Elsevier, pp. 273-306.

Coco, G., Zhou, Z., van Maanen, B., Olabarrieta, M., Tinoco, R. and Townend, I., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346: 1-16, doi:10.1016/j.margeo.2013.08.005.

Fagherazzi, S. and Wiberg, P.L., 2009. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research, 114(F3): F03022-F03022, doi:10.1029/2008JF001139.

Flemming, B.W. and Nyandwi, N., 1994. Land reclamation as a cause of fine-grained sediment depletion in backbarrier tidal flats (Southern North Sea). Netherlands Journal of Aquatic Ecology, 28(3-4): 299-307, doi:10.1007/BF02334198.

Friedrichs, C.T., 2011. Tidal flat morphodynamics: A synthesis. In: E. Eric Wolanski and D. McLusky (E. Eric Wolanski and D. McLusky)^(E. Eric Wolanski and D. McLuskys)|,*. Academic Press, pp. 137-170.

Gao, G.D., Wang, X.H. and Bao, X.W., 2014. Land reclamation and its impact on tidal dynamics in Jiaozhou Bay, Qingdao, China. Estuarine, Coastal and Shelf Science, 151: 285-294, doi:10.1016/j.ecss.2014.07.017.

Gu, D., Zhang, Y., Fu, J. and Zhang, X., 2007. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay Under the Impact of Human Activities. Environmental Monitoring and Assessment, 124(1-3): 361-370, doi:10.1007/s10661-006-9232-7.

Janssen-Stelder, B., 2000. The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea. Continental Shelf Research, 20(12-13): 1461-1478, doi:10.1016/S0278-4343(00)00032-7.

Jing, Y.U., Sun, Y.L. and Zhang, Y., 2007. Impact prediction of land-forming on marine environment in Jiaozhou Bay and Qianwan Bay I. Impact on hydrodynamic environment. Marine Environmental Science

Kearney, M.S., Riter, J.C.A. and Turner, R.E., 2011. Freshwater river diversions for marsh restoration in Louisiana: Twenty-six years of changing vegetative cover and marsh area. Geophysical Research Letters, 38(16): n/a-n/a, doi:10.1029/2011GL047847.

Li, X., Bellerby, R., Craft, C. and Widney, S.E., 2018. Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts: 1-15, doi:10.1139/anc-2017-0001.

Li, X., Sun, Y., Mander, Ü. and He, Y., 2013. Effects of land use intensity on soil nutrient distribution after reclamation in an estuary landscape. Landscape Ecology, 28(4): 699-707, doi:10.1007/s10980-012-9796-2.

Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, ASCE, 91(1): 105-139

Portnoy, J.W. and Giblin, A.E., 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry. BIOGEOCHEMISTRY, 36(3): 275-303, doi:10.1023/A:1005715520988.

Roberts, W., Le Hir, P. and Whitehouse, R.J.S., 2000. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Continental Shelf Research, 20(10-11): 1079-1097, doi:10.1016/S0278-4343(00)00013-3.

Song, D., Wang, X.H., Zhu, X. and Bao, X., 2013. Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas. Estuarine, Coastal and Shelf Science, 133: 147-160, doi:10.1016/j.ecss.2013.08.023.

Soulsby, R.L., 1997. Dynamics of marine sands: A manual for practical applications. Thomas Telford, London.

Spencer, K.L., Carr, S.J., Diggens, L.M., Tempest, J.A., Morris, M.A. and Harvey, G.L., 2017. The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes. Science of The Total Environment, 587-588: 47-58, doi:10.1016/j.scitotenv.2016.11.032.

Tian, B., Wu, W., Yang, Z. and Zhou, Y., 2016. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuarine Coastal & Shelf Science, 170: 83-90

Wang, Y.P., Gao, S., Jia, J., Thompson, C.E.L., Gao, J. and Yang, Y., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291-294: 147-161, doi:10.1016/j.margeo.2011.01.004.

Wu, W., Yang, Z., Tian, B., Huang, Y., Zhou, Y. and Zhang, T., 2018. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuarine, Coastal and Shelf Science, 210: 153-161, doi:10.1016/j.ecss.2018.06.013.

Young, I.R. and Verhagen, L.A., 1996a. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coastal Engineering, 29(1-2): 47-78, doi:10.1016/S0378-3839(96)00006-3.

Young, I.R. and Verhagen, L.A., 1996b. The growth of fetch limited waves in water of finite depth. Part 2. Spectral evolution. Coastal Engineering, 29(1-2): 79-99, doi:10.1016/S0378-3839(96)00007-5.

Zhou, Z., Coco, G., van der Wegen, M., Gong, Z., Zhang, C. and Townend, I., 2015. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves. Continental Shelf Research, 104: 76-91, doi:10.1016/j.csr.2015.05.010.

Zhou, Z., Ye, Q. and Coco, G., 2016. A one-dimensional biomorphodynamic model of tidal flats: Sediment sorting, marsh distribution, and carbon accumulation under sea level rise. Advances in Water Resources, 93: 288-302, doi:10.1016/j.advwatres.2015.10.011.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.