PREDICTION OF DYNAMIC AND QUASI-STATIC IMPACTS ON VERTICAL SEA WALLS CAUSED BY AN OVERTOPPED BORE
ICCE 2018 Cover Image
PDF

Supplementary Files

Conference Presentation File

How to Cite

Streicher, M., Kortenhaus, A., Gruwez, V., Hofland, B., Chen, X., Hughes, S. A., & Hirt, M. (2018). PREDICTION OF DYNAMIC AND QUASI-STATIC IMPACTS ON VERTICAL SEA WALLS CAUSED BY AN OVERTOPPED BORE. Coastal Engineering Proceedings, 1(36), papers.28. https://doi.org/10.9753/icce.v36.papers.28

Abstract

This study comprises a detailed description of the individual overtopped bore impact processes against a vertical wall, situated on top of a dike. A twin peak force impact signal shape was observed with two distinct peaks during every impact. The two peaks were assigned consecutively to the dynamic components (thickness and velocity) or hydrostatic components (run-up of water at the wall) of the impacting bore. The two peaks were termed dynamic F1 and quasi-static F2 impact respectively. Based on available literature semi-empirical equations to describe either the dynamic F1 or quasi-static F2 impact force were investigated and the prediction accuracy evaluated using impact force data from large-scale experiments. The prediction accuracy of the dynamic F1 impacts was very low. The prediction accuracy of the quasi-static impact F2 was increased based on fitting the hydrostatic theory to the maximum run-up measurement at the wall. Based on these findings 80% of the maximum run-up height was effectively contributing to the maximum quasi-static force F2 on the wall. The results coincided well with previous small-scale studies (Chen et al. 2012). After deconstructing the process chain preceding an impact, using the physically most meaningful parameters to predict the impact force, evaluating on a range of existing approaches, and observing the scattered prediction results, it was concluded that the impact behavior is highly stochastic and statistical analysis would be more beneficial.
https://doi.org/10.9753/icce.v36.papers.28
PDF

References

Arnason, H., C. Petroff, H. Yeh. 2009. Tsunami bore impingement onto a vertical column, Journal of Disaster Research 4, 391-403. doi: 10.20965/jdr.2009.p039. Arnason, H. 2005. Interactions between an Incident Bore and a Free-Standing Coastal Structure, Ph.D. Thesis, University of Washington, Seattle, 172 pp.

Asakura, R., K. Iwase, T. Ikeya, M. Takao, T. Kaneto, N. Fujii, M., and Ohmori. 2002. The tsunami wave force acting on land structures, Proceedings of the 28th International Conference on Coastal Engineering, ASCE, 1191-1202.

Allsop N.W.H. 2005. CLASH Work Package 6: Analysis of overtopping hazards, Report D38, publn. HR Wallingford and University of Ghent, see: http://www.clash-eu.org/.

Bukreev, V.I. 2009. Dynamic action of a tsunami wave traveling along a channel, Journal of Fluid Dynamics 44 (3), 442-447, https://doi.org/10.1134/S0015462809030120.

Cappietti, L., Simonetti, I., Esposito, A., Streicher, M., Kortenhaus, A., Scheres, B., Schuettrumpf, H., Hirt, M., Hofland, B., Chen, X. 2018. Large-scale experiments of wave-overtopping loads on walls: Layer thicknesses and velocities, 37th International conference on ocean, offshore and arctic engineering, Madrid, Spain, 6 pp.

Chen, X. 2016. Impacts of overtopping waves on buildings on coastal dikes, PhD diss., TU Delft, doi: 10.4233/uuid:e899b6e4-fcbe-4e05-b01f-116901eabfef.

Chen, X., B. Hofland, C. Altomare, T. Suzuki, W. Uijttewaal. 2016. Forces on a vertical wall on a dike crest due to overtopping flow, Coastal Engineering 96, 94-104, doi: 10.1016/j.coastaleng.2014.10.002.

Chen, X., B. Hofland, C. Altomare, T. Suzuki, W. Uijttewaal. 2015. Forces on a vertical wall on a dike crest due to overtopping flow, Coastal Engineering 95, 94-104, doi: 10.1016/j.coastaleng.2014.10.002.

Chen, X., B. Hofland, C. Altomare, W. Uijttewaal. 2014. Overtopping flow impact on a vertical wall on a dike crest, Proceedings of 34th conference on coastal engineering, Seoul, South Korea, 1-10. https://doi.org/10.9753/icce.v34.structures.4.

Chen, X. , W. Hassan, W. Uijttewaal, T. Verwaest, H. J. Verhagen, T. Suzuki, S. N. Jonkman. 2012. Hydrodynamic load on the building caused by overtopping waves, Proceedings of 33rd conference on coastal engineering, Santander, Spain, 1-11 pp. https://doi.org/10.9753/icce.v33.structures.59.

Cross, R. H. 1967. Tsunami surge forces, Journal of the Waterways and Harbors Division 93 (4), 201-231.

Cumberbatch, E., 1960. The impact of a water wedge on a wall, Journal of Fluid Mechanics 7, 353-374. doi:10.1017/S002211206000013X.

Den Heijer, F. 1998. Gofloverslag en krachten op verticale waterkeringsconstructies, Report, Rijkswaterstaat, Dienst Weg- en Waterbouwkunde.

De Rouck, J., K. Van Doorslaer, T. Versluys,. K. Ramachandran, S. Schimmels, M. Kudella, K. Trouw. 2012. Full scale impact tests of an overtopping bore on a vertical wall in the large wave flume (GWK) in Hannover, Proceedings of 33rd conference on coastal engineering, Santander, Spain, 1-11, https://doi.org/10.9753/icce.v33.structures.62.

EurOtop, 2016. Manual on wave overtopping of sea defences and related structures. Van der Meer, J.W., Allsop, W., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schuttrumpf, H., Troch, P., Zanuttigh, B.

FEMA 55. 2000. Coastal Construction Manual, Federal Emergency Management Agency, Washington DC, USA.

Fujima, K., Achmad, F., Shigihara, Y., and Mizutani, N. 2009. Estimation of tsunami force acting on rectangular structures, Journal of Disaster Research 4, 404-409.

Hofland, B., Chen, X., Altomare, C., Oosterlo, P. 2017. Prediction formula for the spectral period Tm-1,0 on mildly sloping shallow foreshores, Coastal Engineering 123, 21-28.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Kihara, N., Niida, Y., Takabatake, D., Kaida, H., Shibayama, A., Miyagawa, Y. 2015. Large-scale experiments on tsunami-induced pressure on a vertical tide wall, Coastal Engineering 99, 46-63, doi: 10.1016/j.coastaleng.2015.02.009.

Klammer, P, Kortenhaus, A., Oumeraci, H. 1996. Wave impact loading of vertical face structures for dynamic stability analysis- prediction formulae, 25th International conference on coastal engineering, Orlando, Florida, USA.

Kleidon, P. 2014. Modelluntersuchungen zum Wellenuberlauf eines geschutteten Wellenbrechers und zur uberlaufinduzierten Gefährdung von Personen auf Kronenbauwerken, Master's theses, Leichtweiß-Institut fur Wasserbau, TU Braunschweig, Germany.

Kortenhaus, A., D. Gallach Sanchez, M. Streicher, C. Hohls, K. Trouw, C. Altomare, T. Suzuki, D. Thoon, P. Troch, J. De Rouck. 2017. Wave Overtopping and Wave-induced Loads on Coastal Sea Walls, Coastal structures and solutions to coastal disaster joint conference, Boston, USA, 1-7, https://doi.org/10.1061/9780784480304.068.

Lubin, P., Chanson H., 2017. Are breaking waves, bores, surges and jumps the same flow?. Environmental Fluid Mechanics, 17 (1), 47-77. doi: 10.1007/s10652-016-9475-y.

Mansard, E.P.D. and Funke, E.R., 1980. The measurement of incident and reflected spectra using a least squares method, International conference on coastal engineering, Hamburg, Germany, 154-169.

Martin, F.L., M.A. Losada, and R. Medina. 1999. Wave loads on rubble mound breakwater crown wall, Coastal Engineering 37, 149-174.

Oumeraci, H., P. Klammer, H. Partenscky. 1993. Classification of breaking wave loads on vertical structures, Journal of Waterway, Port, Coastal, and Ocean Engineering 119, 381-397. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:4(381).

Ramachandran, K., R. Genzalez, H. Oumeraci, S. Schimmels, M. Kudella, K. Van Doorslaer, J. De Rouck, T. Versluys, K. Trouw. 2012. "Loading of vertical walls by overtopping bores using pressure and force sensors - a large scale model study.† Proceedings of 33rd conference on coastal engineering, Santander, Spain, 1-15, https://doi.org/10.9753/icce.v33.currents.44.

Ramsden, J.D. 1996. Forces on a vertical wall due to long waves, bores and dry-bed surges, Journal of Waterway, Port, Coastal, and Ocean Engineering 122, 134-141, https://doi.org/10.1061/(ASCE)0733-950X(1996)122:3(134).

Ramsden, J.D. 1993. Tsunamis: Forces on a vertical wall caused by long waves, bores, and surges on a dry bed, Report No. KH-R-54, W.M. Keck Laboratory, California Institute of Technology, Pasadena, Calif., 251 pp.

Streicher, M., Kortenhaus, A., Marinov, K., Hirt, M., Hughes, S., Hofland, B., Scheres, B., Schuttrumpf, H. 2018. Process based classification of short-duration overtopped bores impacting a dike mounted vertical wall, Coastal Engineering Journal, (under review).

Streicher, M., A. Kortenhaus, C. Altomare, V. Gruwez, B. Hofland, X. Chen, K. Marinov, B. Scheres, H. Schuttrumpf, M. Hirt, L. Cappietti, A. Esposito, A. Saponieri, N. Valentini, G. Tripepi, D. Pasquali, M. D. Risio, F. Aristodemo, L. Damiani, M. Willems., D. Vanneste, T.Suzuki, M. Klein Breteler, D. Kaste. 2017. WALOWA (Wave Loads on Walls) - Large-scale experiments in the Delta Flume, Proceedings of the 8th SCACR conference, Santander, Spain, 2017, 1-11, doi: 10.5281/zenodo.834874.

Tanimoto, K., Tsuruya, H. and Nakano, S. 1984. Experimental Study of Tsunami Force and Investigation of the Cause of Sea Wall Damage During 1983 Nihonkai Chubu Earthquake, Proc. 31st Japanese Conference Coastal Engineering, 257-261 (in Japanese).

Van Der Meer, J. W., Hardeman, B., Steendam, G.-J., Schuttrumpf, H., Verheij, H. 2010. Flow depths and velocities at crest and landward slope of a dike, in theory and with the wave overtopping simulator. Proceedings of 32nd conference on coastal engineering, Shanghai, China, 1-15, doi:https://doi.org/10.9753/icce.v32.structures.10.

Doorslaer, K., A. Romano, J. De Rouck, A. Kortenhaus. 2017. Impacts on a storm wall caused by non-breaking waves overtopping a smooth dike slope, Coastal Engineering 120, 93-111, doi: 10.1016/j.coastaleng.2016.11.010.

Van Doorslaer, K., A. Romano, J. De Rouck, A. Kortenhaus. 2017. Impacts on a storm wall caused by non-breaking waves overtopping a smooth dike slope, Coastal Engineering 120, 93-111, doi: 10.1016/j.coastaleng.2016.11.010.

Van Doorslaer, K., J. De Rouck, J.W. Van der Meer, K. Trouw. 2012. Full scale wave impact tests on a vertical wall using the wave overtopping simulator, Proceedings of 33rd conference on coastal engineering, Santander, Spain, 2012, 1-6.

Verwaest, T., Hassan, W., Reyns, J., Balens, N., Trouw, K., De Rouck, J., Van Doorslaer, K., Troch, P. 2011. Hydrodynamic loading of wave return walls on top of seaside promenades, 6th International conference on coastal structures, Yokohama, Japan, 568-576.

Wuthrich, D., 2017. Impact of a dry bed surge against structures with and without openings, Proceedings of 37th IAHR World congress, Kuala Lumpur, Malaysia, 10 pp.

Yeh, H. 2006. Maximum fluid forces in the tsunami runup zone, Journal of Waterway, Port, Coastal and Ocean Engineering 132 (6), 496 -500, https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(496)

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.