RANS-VOF modeling of hydrodynamics and sand transport under full-scale non-breaking and breaking waves
ICCE 2016 Cover Image
PDF

Keywords

wave boundary layer
turbulence model
plunging breaking waves
sediment transport

How to Cite

Fernandez-Mora, A., Ribberink, J. S., van der Zanden, J., van der Werf, J. J., & Jacobsen, N. G. (2017). RANS-VOF modeling of hydrodynamics and sand transport under full-scale non-breaking and breaking waves. Coastal Engineering Proceedings, 1(35), sediment.29. https://doi.org/10.9753/icce.v35.sediment.29

Abstract

A 2D RANS-VOF model is used to simulate the flow and sand transport for two different full-scale laboratory experiments: i) non-breaking waves over a horizontal sand bed (Schretlen et al., 2011) and ii) plunging breaking waves over a barred mobile bed profile (Van der Zanden et al., 2016). For the first time, the model is not only tested and validated in terms of water surface and outer flow hydrodynamics, but also in terms of wave boundary layer processes and sediment concentration patterns. It is shown that the model is capable of reproducing the outer flow (mean currents and turbulence patterns) as well as the spatial and temporal development of the wave boundary layer. The simulations of sediment concentration distributions across the breaking zone show the relevance of accounting for turbulence effects on computing suspended sediment pick-up from the bed.
https://doi.org/10.9753/icce.v35.sediment.29
PDF

References

T. Aagaard and S. G. Jensen. Sediment concentration and vertical mixing under breaking waves. Marine Geology, 336:146 - 159, 2013. ISSN 0025-3227. doi: http://dx.doi.org/10.1016/j.margeo.2012.11.015.

R. Bakhtyar, A. Yeganeh-Bakhtiary, D. Barry, and A. Ghaheri. Two-phase hydrodynamic and sediment transport modeling of wave-generated sheet flow. Advances in Water Resources, 32(8):1267 - 1283, 2009. ISSN 0309-1708. doi: http://dx.doi.org/10.1016/j.advwatres.2009.05.002.

J. A. Brinkkemper, A. T. M. de Bakker, and B. G. Ruessink. Intrawave sand suspension in the shoaling and surf zone of a field-scale laboratory beach. Journal of Geophysical Research: Earth Surface, 122(1):356-370, 2017. ISSN 2169-9011. doi: 10.1002/2016JF004061. 2016JF004061.

S. Brown, D. Greaves, V. Magar, and D. Conley. Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone. Coastal Engineering, 114:177 - 193, 2016. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/j.coastaleng.2016.04.002.

E. D. Christensen. Large eddy simulation of spilling and plunging breakers. Coastal Engineering, 53 (5-6):463 - 485, 2006. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/j.coastaleng.2005.11.001.

E. D. Christensen, D.-J. Walstra, and N. Emerat. Vertical variation of the flow across the surf zone. Coastal Engineering, 45(3-4):169 - 198, 2002. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/ S0378-3839(02)00033-9. Surface and Swash Zone Mechanics.

A. Davies, L. van Rijn, J. Damgaard, J. van de Graaff, and J. Ribberink. Intercomparison of research and practical sand transport models. Coastal Engineering, 46(1):1 - 23, 2002. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/S0378-3839(02)00042-X.

M. Dyhr-Nielsen and T. Sørensen. Some sand transport phenomena on coasts with bars. Coastal Engineering Proceedings, 1(12):855-865, 1970.

F. Engelund and J. Fredsøe. A sediment transport model for straight alluvial channels. Hydrology Research, 7(5):293-306, 1976. ISSN 0029-1277.

J. Fredsøe and R. Deigaard. Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engineering. World Scientific, 1992. ISBN 9789810208417.

J. Fredsøe, B. Sumer, A. Kozakiewicz, L. H. Chua, and R. Deigaard. Effect of externally generated turbulence on wave boundary layer. Coastal Engineering, 49(3):155 - 183, 2003. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/S0378-3839(03)00032-2.

F. Grasso, B. Castelle, and B. Ruessink. Turbulence dissipation under breaking waves and bores in a natural surf zone. Continental Shelf Research, 43:133 - 141, 2012. ISSN 0278-4343. doi: http:

//dx.doi.org/10.1016/j.csr.2012.05.014.

W. Hassan and J. Ribberink. Modelling of sand transport under wave-generated sheet flows with a RANS diffusion model. Coastal Engineering, 57(1):19 - 29, 2010. ISSN 0378-3839. doi: http:

//dx.doi.org/10.1016/j.coastaleng.2009.08.009.

L. E. Holmedal and D. Myrhaug. Boundary layer flow and net sediment transport beneath asymmetrical waves. Continental Shelf Research, 26(2):252 - 268, 2006. ISSN 0278-4343. doi: http://dx.doi.org/

1016/j.csr.2005.11.004.

T.-J. Hsu and P. L.-F. Liu. Toward modeling turbulent suspension of sand in the nearshore. Journal of Geophysical Research: Oceans, 109(C6), 2004. ISSN 2156-2202. doi: 10.1029/2003JC002240. C06018.

D. Hurther, P. D. Thorne, M. Bricault, U. Lemmin, and J.-M. Barnoud. A multi-frequency acoustic concentration and velocity profiler (ACVP) for boundary layer measurements of fine-scale flow and sediment transport processes. Coastal Engineering, 58(7):594 - 605, 2011. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/j.coastaleng.2011.01.006. Scaling, Analysis and New instrumentation for Dynamic bed tests. The SANDS-Hydralab {III} papers.

N. G. Jacobsen and J. Fredsøe. Formation and development of a breaker bar under regular waves. Part 2: Sediment transport and morphology. Coastal Engineering, 88:55 - 68, 2014. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/j.coastaleng.2014.01.015.

N. G. Jacobsen, D. R. Fuhrman, and J. Fredsøe. A wave generation toolbox for the open-source cfd library: Openfoam ®. International Journal for Numerical Methods in Fluids, 70(9):1073-1088, 2012. ISSN 1097-0363. doi: 10.1002/fld.2726.

N. G. Jacobsen, J. Fredsøe, and J. H. Jensen. Formation and development of a breaker bar under regular waves. Part 1: Model description and hydrodynamics. Coastal Engineering, 88:182 - 193, 2014. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/j.coastaleng.2013.12.008.

B. L. Jensen, B. M. Sumer, and J. Fredsøe. Turbulent oscillatory boundary layers at high reynolds numbers. Journal of Fluid Mechanics, 206:265-297, 09 1989. doi: 10.1017/S0022112089002302.

W. Kranenburg, J. Ribberink, J. Schretlen, and R. Uittenbogaard. Sand transport beneath waves: the role of progressive wave streaming and other free surface effects. Journal of geophysical research. Earth surface, 118(1):1 - 18, 2013.

F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598-1605, 1994.

K. Nadaoka, S. Ueno, and T. Igarashi. Sediment suspension due to large scale eddies in the surf zone. Coastal Engineering Proceedings, 1(21), 2011. ISSN 2156-1028. doi: 10.9753/icce.v21.%p.

W. Rodi. Turbulence models and their application in hydraulics : a state-of-the-art review. Rotterdam: Balkema, 3rd ed edition, 1993. ISBN 9054101504. Published for the International Association for Hydraulic Research.

A. Roulund, B. M. Sumer, J. Fredsøe, and J. Michelsen. Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics, 534:351-401, 7 2005. ISSN 1469-7645. doi: 10.1017/S0022112005004507.

B. G. Ruessink, H. Michallet, T. Abreu, F. Sancho, D. A. Van der A, J. J. Van der Werf, and P. A. Silva. Observations of velocities, sand concentrations, and fluxes under velocity-asymmetric oscillatory flows. Journal of Geophysical Research: Oceans, 116(C3), 2011. ISSN 2156-2202. doi: 10.1029/2010JC006443. C03004.

J. Schretlen. Sand transport under full-scale progressive surface waves. PhD thesis, University of Twente, Enschede, The Netherlands, 2012.

J. Schretlen, J. Ribberink, and T. O'Donoghue. Boundary layer flow and sand transport under full scale surface waves. In J. M. Amith and P. Lynett, editors, Proceedings 32nd ICCE 2010, Shangai, pages 1-14. CERC, 2011.

C. P. Scott, D. T. Cox, T. B. Maddux, and J. W. Long. Large-scale laboratory observations of turbulence on a fixed barred beach. Measurement Science and Technology, 16(10):1903, 2005.

B. Sumer, T. Laursen, and J. Fredsøe. Wave boundary layers in a convergent tunnel. Coastal Engineering, 20(3):317 - 342, 1993. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/0378-3839(93) 90006-T.

I. Svendsen, P. Madsen, and J. Hansen. Wave characteristics in the surf zone. Coastal Engineering Proceedings, 1(16), 1978. ISSN 2156-1028.

F. C. Ting and J. T. Kirby. Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering, 24(1-2):51 - 80, 1994. ISSN 0378-3839. doi: http://dx.doi.org/10.1016/0378-3839(94) 90026-4.

A. Torres-Freyermuth, I. J. Losada, and J. L. Lara. Modeling of surf zone processes on a natural beach using reynolds-averaged navier-stokes equations. Journal of Geophysical Research: Oceans, 112 (C9):n/a-n/a, 2007. ISSN 2156-2202. doi: 10.1029/2006JC004050. C09014.

D. A. Van der A, J. van der Zanden, T. O'Donoghue, D. Hurther, I. Cáceres, S. J. McLelland, and J. S. Ribberink. Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar. Journal of Geophysical Research: Oceans, pages n/a-n/a, 2017. ISSN 2169-9291. doi: 10.1002/

JC012072.

J. Van der Zanden, D. A. Van der A, D. Hurther, I. Cáceres, T. O'Donoghue, and J. S. Ribberink. Near-bed hydrodynamics and turbulence below a large-scale plunging breaking wave over a mobile barred bed profile. Journal of Geophysical Research: Oceans, 121(8):6482-6506, 2016. ISSN 2169-9291. doi: 10.1002/2016JC011909.

J. Van der Zanden, D. A. Van der A, D. Hurther, I. Cáceres, T. O'Donoghue, and J. S. Ribberink. Suspended sediment transport around a large-scale laboratory breaker bar. Coastal Engineering, in press, 2017.

D. C. Wilcox. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26:1299-1310, Nov. 1988. doi: 10.2514/3.10041.

Z. Xie. Numerical study of breaking waves by a two-phase flow model. International Journal for Numerical Methods in Fluids, 70(2):246-268, 2012. ISSN 1097-0363. doi: 10.1002/fld.2690.

Z. Xie. Two-phase flow modelling of spilling and plunging breaking waves. Applied Mathematical Modelling, 37(6):3698 - 3713, 2013. ISSN 0307-904X. doi: http://dx.doi.org/10.1016/j.apm.2012. 07.057.

H.-D. Yoon and D. T. Cox. Large-scale laboratory observations of wave breaking turbulence over an evolving beach. Journal of Geophysical Research: Oceans, 115(C10):n/a-n/a, 2010. ISSN 2156-2202. doi: 10.1029/2009JC005748. C10007.

H.-D. Yoon and D. T. Cox. Cross-shore variation of intermittent sediment suspension and turbulence induced by depth-limited wave breaking. Continental Shelf Research, 47:93 - 106, 2012. ISSN 0278-4343. doi: http://dx.doi.org/10.1016/j.csr.2012.07.001.

Q. Zhao, S. Armfield, and K. Tanimoto. Numerical simulation of breaking waves by a multi-scale turbulence model. Coastal Engineering, 51(1):53 - 80, 2004. ISSN 0378-3839. doi: http://dx.doi.org/10.1016.j.coastaleng.2003.12.002.

Z. Zhou, T.-J. Hsu, D. Cox, and X. Liu. Large-eddy simulation of wave-breaking induced turbulent coherent structures and suspended sediment transport on a barred beach. Journal of Geophysical Research: Oceans, 122(1):207-235, 2017. ISSN 2169-9291. doi: 10.1002/2016JC011884.

J. A. Zyserman and J. Fredsøe. Data analysis of bed concentration of suspended sediment. Journal of Hydraulic Engineering, 120(9):1021-1042, 1994. doi: 10.1061/(ASCE)0733-9429(1994)120:9(1021).

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.