VALIDATION OF A PROBABILISTIC METHOD FOR THE STRUCTURAL
ICCE 2016 Cover Image
PDF

Keywords

Energy Converters
Seawave Slot-Cone Generator
physical modeling
wave loadings.

How to Cite

Buccino, M., Dentale, F., Salerno, D., & Contestabile, P. (2017). VALIDATION OF A PROBABILISTIC METHOD FOR THE STRUCTURAL. Coastal Engineering Proceedings, 1(35), structures.28. https://doi.org/10.9753/icce.v35.structures.28

Abstract

The paper deals with the validation of a wave by wave approach for the calculation of the wave loadings exerted on an overtopping type Wave Energy Converter named Seawave Slot-Cone Generator (SSG). The prediction method, originally developed for regular waves, employs the Iribarren number (Battjes, 1974), the slope parameter (Svendsen, 2006) and the Linear thrust parameter (Buccino et al., 2015) as main predictors. The approach has been tested against five 2-D random wave tests, carried out in view of the design of a new pilot plant to be located along the Norwegian coast.
https://doi.org/10.9753/icce.v35.structures.28
PDF

References

Azzellino, A., D. Conley, D. Vicinanza, and J. Kofoed. 2013. Marine Renewable Energies: Perspectives and Implications for Marine Ecosystems, Scientific World Journal, vol. 2013, 547-563.

Battjes, J.A. 1974. Surf similarity. Proceedings 14th Coastal Engineering Conference. 1974. ASCE, New York, N.Y., pp. 466-480.

Buccino, M., Banfi, D., Vicinanza, D., Calabrese, M., D.Giudice, G., Carravetta, A., 2012. Non breaking wave forces at the front face of Seawave Slotcone Generators. Energies 5, 4779-4803.

Buccino, M.; Vicinanza, D.; Stagonas, D. 2015a. Development of a composite seawall wave energy

conversion system. Renew. Energy 2015, 81, 509-522.

Buccino, M., Vicinanza, D., Dalerno, D., Banfi, D., Calabrese, M. 2015b. Nature and magnitude of wave loadings at Sea-wave Slotcone Generators†. Ocean Engineering. 95, 34-58.

Brooke, J. (Ed.) 2003. Wave Energy Conversion. Elsevier, Oxford.

Calabrese, M., Vicinanza, D. and Buccino, M. 2003. 2D wave setup behind low crested and submerged breakwaters. Proceedings of the Int Offshore Polar Eng., Honolulu ISOPE. 2003. Vol 3., 2176-2181.

Calabrese, M., Buccino, M., Pasanisi, M. 2008. Wave breaking macrofeatureson a submerged rubble-mound break water. Journal of Hydro-environment Research 2008, 1(3-4), 216-225.

Contestabile, P., V. Ferrante, and D. Vicinanza. 2015. Wave Energy Resource along the Coast of Santa Catarina (Brazil), Energies 8(12), 14219-14243.

Contestabile, P., C. Iuppa, E. Di Lauro, L. Cavallaro, T. Lykke Andersen, and D. Vicinanza 2017a. Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion, Coastal Engineering, 122, 60-74.

Contestabile, P., E. Di Lauro, M. Buccino, and D. Vicinanza. 2017b. Economic assessment of Overtopping BReakwater for Energy Conversion (OBREC): a case study in Western Australia, Sustainability, 9(1), 51.

Falcão, A.F.D.O. 2010. Wave Energy Utilization: A Review of the Technologies. Renewable Sustainable Energy Rev. 14, 899-918.

Falnes, J. (Ed.) 2002. Ocean Wave Energy. Cambridge University Press, Cambridge, UK.

Hughes, S.A. 2004. Wave momentum flux parameter: a descriptor for nearshore waves. Coast. Eng. 2004, 51 (11-12), 1067-1084.

Margheritini, L., Vicinanza, D., Frigaard, P. (2009). "SSG wave energy converter: design, reliability and hydraulic performance of an innovative overtopping device†. J. Renew. Energy. 34, 1371-1380.

Oumeraci, H., Allsop, N.W.H., De Groot, M.B., Crouch, R.S., Vrijling, J.K., 1999. Probabilistic design tools for vertical breakwaters. Balkema, Rotterdam the Netherlands.

Svendsen, I.B.A. 2006. Introduction to Nearshore Hydrodynamics. World Scientific.

Tanimoto, K., Kimura, K. A hydraulic experiment study on trapezoidal caisson breakwaters. Port and Harbour Research Institute, Yokosuka, Japan (TechnicalNote No. 528) 1985.

Takahashi, S., Hosoyamada, S., Yamamoto, S. 1994. Hydrodynamic characteristics of sloping top caissons. Proceedings of International Conference on HydroTechnical Engineering for Port and Harbor Construction, 1. Port and Harbour. 1994. Research Institute, Japan, pp. 733-746.

Vicinanza, D., Frigaard, P. 2008 Wave pressure acting on a seawave slot-cone generator. Coast. Eng., 2009, 55, 553-568.

Vicinanza, D., Ciardulli, F., Buccino, M., Calabrese, M., Kofoed, J.P., 2011. Wave loadings acting on an innovative breakwater for energy production. J. Coast. Res., 2011, 64, 608-612

Vicinanza, D., Margheritini, L., Kofoed, J.P., Buccino, M. (2012). The SSG wave energy converter: performance, status and recent developments. Energies 5 (2), 193-226.

Vicinanza, D., J.H. Nørgaard, P. Contestabile, and T. Lykke-Andersen. 2013a. Wave loadings acting on overtopping breakwater for energy conversion, Journal of Coastal Research, Special Issue 65, 1669-1674.

Vicinanza, D., Dentale, F., Salerno, D., Buccino, M. 2015. Structural response of seawave Slot-Cone Generator (SSG) from Random Wave CFD simulations. Proceedings of the International Offshore and Polar Engineering Conference 2015-January, pp. 985-991.

Zelt, J.A., Skjelbreia, J.E, 1992. Estimating incident and reflected wave field using an arbitrary number of wavegauges. In Proceedings of the International Conference on Coastal Engineering, Venice, Italy, 4-9 October 1992; pp. 777-789.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.