Mohammad Daliri, Fabio Dentale, Daniela Salerno, Mariano Buccino


The paper discusses preliminary results of a CFD study on the structural response of a Sloping Top Breakwater subject to wave overtopping. The analysis showed that the transmitted wave field act to increase both the landward and the seaward forces and that the conventional design methods may be not adequate to guarantee an appropriate degree of safety to the structure. The study also confirmed the previous finding by Walkden et al. (2001), which noticed the existence of strong impulsive loadings on the inner face of the wall, due to violent overtopping events.


wave overtoppin; sloping top caisson; impulsive waves; CFD modeling

Full Text:



Allsop, N.W.H., J.E. McKenna, D.Vicinanza, and T.T.J. Whittaker. 1997. New design methods for wave

impact loadings on vertical breakwaters and seawalls, Proceedings of the 25th International

Conference on Coastal Engineering, 2, pp. 2508-2521.

Buccino, M.; Vicinanza, D.; Stagonas, D. 2015a. Development of a composite seawall wave energy

conversion system. Renew. Energy 2015, 81, 509–522.

Buccino, M., Vicinanza, D., Dalerno, D., Banfi, D., Calabrese, M. 2015b. Nature and magnitude of wave

loadings at Sea-wave Slotcone Generators”. Ocean Engineering. 95, 34-58.

Buccino, M., Dentale, F., Salerno, D., Contestabile, P., Calabrese, M., 2016. the use of CFD in the

analysis of wave loadings acting on seawave slot-cone generators. Sustainability, 2016, 8, 1255.

Calabrese, M., Buccino, M., Pasanisi, F., 2008. Wave breaking macrofeatures on a submerged rubble

mound breakwater. Journal of Hydro-Environment Research, 1 (3-4), 216-225.

Cooker, M.J., Peregrine, D.H., 1995. Pressure-impulse theory for liquid impact problems. J. Fluid

Mechanics, 297, 193–214.

Dentale, F., Donnarumma, G., Pugliese Carratelli, E., 2014a. Simulation of flow within armour blocks

in a breakwater. J. Coast. Res. 2014, 30, 528–536.

Dentale, F., Donnarumma, G., Pugliese Carratelli, E., 2014b. Numerical wave interaction with Tetrapods

breakwater. J. Naval Arch. Ocean Eng. 2014, 6, 800–812.

Flow Science Inc., 2009. Suite Flow 3D. Flow Science Inc.: Santa Fe, Mexico.

Goda, Y., 1995. Japan's design practice in assessing wave forces on vertical breakwaters,Wave forces on

inclined and vertical wall structures. ASCE p. 402.

Peregrine, D.H., 2003. Water-wave impact on walls. Ann. Rev. Fluid Mech. 35, 23–44.

EurOtop. (2007). European manual for the assessment of wave overtopping, T. Pullen, N. W. H. Allsop,

T. Bruce, A. Kortenhaus, H. Schüttrumpf, and J. W. Van der Meer, eds., HR Wallingford,

Wallingford, U.K.

Takahashi, S. Hosoyamada, S. Yamamoto, S., 1994. Hydrodynamic characteristics of sloping top

caissons. In Proceedings of International Conference on HydroTechnical Engineering for Port and

Harbor Construction, 1. Port and Harbour; Research Institute: Tokyo, Japan, 1994; pp. 733–746.

Vicinanza, D., 1997. (In Italian). Ph.D. thesis). Pressioni e forze di impatto di onde frangenti su dighe a

paramento verticale e composite.

Vicinanza, D., Dentale, F., Salerno, D., Buccino, M., 2015. Structural response of Seawave Slot-Cone

Generator (SSG) from Random Wave CFD simulations. Proceedings of the International Offshore

and Polar Engineering Conference (ISOPE 2015). 2015-January, pp. 985-991.

Walkden, M., Wood, D., Bruce, T., and Peregrine, D. (2001) Impulsive seaward loads induced by wave

overtopping on caisson breakwaters. Coastal Engineering, 42, 257–276.

Zelt, J.A., Skjelbreia, J.E, 1992. Estimating incident and reflected wave field using an arbitrary number

of wavegauges. In Proceedings of the International Conference on Coastal Engineering, Venice,

Italy, 4–9 October 1992; pp. 777–789.

DOI: https://doi.org/10.9753/icce.v35.structures.41