3D PHYSICAL MODELING OF TSUNAMIS GENERATED BY SUBMERGED LANDSLIDES AT A CONICAL ISLAND: THE ROLE OF INITIAL ACCELERATION

Alessandro Romano, Marcello Di Risio, Matteo G Molfetta, Giorgio Bellotti, Davide Pasquali, Paolo Sammarco, Leonardo Damiani, Paolo De Girolamo

Abstract


This paper presents a new set of 3D experiments aimed to gain insight on the role of the initial acceleration upon the generation process of tsunamis by submerged landslides that may occur at the flanks of conical islands. The
experiments have been carried out in a large wave tank by varying the initial acceleration of the landslide model. A novel system, relying on the use of a computer controlled stepped motor, has been employed to control the motion of the landslide model. The experiments have been carried out in a parametric way by changing the initial acceleration of the landslide, aiming to reproduce dierent triggering mechanisms. Preliminary experimental findings confirmed the crucial role of the initial acceleration of the submerged landslide in generating tsunamis.

Keywords


tsunamis; submerged landslisdes; conical island

Full Text:

PDF

References


G. Bellotti, M. Di Risio, and P. De Girolamo. Feasibility of tsunami early warning systems for small

volcanic islands. Natural Hazards and Earth System Science, 9(6):1911–1919, 2009.

M. Briggs, C. Synolakis, G. Harkins, and S. Hughes. Large scale three-dimensional laboratory measurements

of tsunami inundation. Advances In Natural And Technological Hazards Research, 4:129–150,

b.

M. Briggs, C. Synolakis, G. Harkins, and D. Green. Laboratory Experiments of tsunami runup on a circular

island. Pure And Applied Geophysics, 144(3-4):569–593, AUG 1995a. ISSN 0033-4553. doi: {10.1007/

BF00874384}.

C. Cecioni and G. Bellotti. Modeling tsunamis generated by submerged landslides using depth integrated

equations. Applied Ocean Research, 32(3):343–350, 2010.

C. Cecioni, A. Romano, G. Bellotti, M. Di Risio, and P. de Girolamo. Real-time inversion of tsunamis

generated by landslides. Nat. Hazards Earth Syst. Sci, 11:2511–2520, 2011.

Y.-S. Cho and P. L. F. Liu. Crest-length eects in nearshore tsunami run-up around islands. J. Geophys.

Res., 104(C4):7907–7913, 1999. ISSN 0148-0227. doi: 10.1029/1999JC900012.

Y.-S. Cho, K.-Y. Park, and T.-H. Lin. Run-up heights of nearshore tsunamis based on quadtree grid system.

Ocean Engineering, 31(8 - 9):1093 – 1109, 2004. ISSN 0029-8018. doi: 10.1016/j.oceaneng.2003.10.

P. De Girolamo, M. Di Risio, A. Romano, and M. Molfetta. Landslide tsunami: physical modeling for the

implementation of tsunami early warning systems in the mediterranean sea. Procedia Engineering, 70:

–438, 2014.

M. Di Risio and P. Sammarco. Analytical modeling of landslide-generated waves. Journal of waterway,

port, coastal, and ocean engineering, 134(1):53–60, 2008.

M. Di Risio, P. De Girolamo, and G. Beltrami. Forecasting landslide generated tsunamis: a review. The

Tsunami Threat - Research and Technology, Nils-Axel Marner (Ed.), 2011.

M. Di Risio, G. Bellotti, A. Panizzo, and P. De Girolamo. Three-dimensional experiments on landslide

generated waves at a sloping coast. Coastal Engineering, 56(5-6):659–671, MAY-JUN 2009a. ISSN

-3839. doi: {10.1016/j.coastaleng.2009.01.009}.

M. Di Risio, P. De Girolamo, G. Bellotti, A. Panizzo, F. Aristodemo, M. G. Molfetta, and A. F. Petrillo.

Landslide-generated tsunamis runup at the coast of a conical island: New physical model experiments.

Journal of Geophysical Research-Oceans, 114, JAN 20 2009b. ISSN 0148-0227. doi:

{10.1029/2008JC004858}.

F. Enet and S. T. Grilli. Experimental study of tsunami generation by three-dimensional rigid underwater

landslides. Journal Of Waterway Port Coastal And Ocean Engineering-ASCE, 133(6):442–454, NOVDEC

ISSN 0733-950X. doi: {10.1061/(ASCE)0733-950X(2007)133:6(442)}.

F. Enet, S. T. Grilli, P.Watts, et al. Laboratory experiments for tsunamis generated by underwater landslides:

comparison with numerical modeling. In The Thirteenth International Oshore and Polar Engineering

Conference. International Society of Oshore and Polar Engineers, 2003.

H. M. Fritz, F. Mohammed, and J. Yoo. Lituya bay landslide impact generated mega-tsunami 50th anniversary.

Pure and Applied Geophysics, 166(1-2):153–175, 2009.

H. M. Fritz, J. V. Hillaire, E. Molière, Y. Wei, and F. Mohammed. Twin tsunamis triggered by the 12

january 2010 haiti earthquake. Pure and Applied Geophysics, pages 1–12, 2012.

S. T. Grilli and P. Watts. Underwater Landslide Shape, Motion, Deformation, and Tsunami Generation. In

EGS - AGU - EUG Joint Assembly, page 13216, 2003.

S. T. Grilli and P. Watts. Tsunami generation by submarine mass failure. i: Modeling, experimental validation,

and sensitivity analyses. Journal of waterway, port, coastal, and ocean engineering, 131(6):

–297, 2005.

V. Heller and J. Spinneken. On the eect of the water body geometry on landslide–tsunamis: Physical

insight from laboratory tests and 2d to 3d wave parameter transformation. Coastal Engineering, 104:

–134, 2015.

V. Heller, M. Bruggemann, J. Spinneken, and B. D. Rogers. Composite modelling of subaerial landslide–

tsunamis in dierent water body geometries and novel insight into slide and wave kinematics. Coastal

Engineering, 109:20–41, 2016.

R. S. Johnson. Edge waves: theories past and present. Philosophical Transactions Of The Royal Society

A-Mathematical Physical And Engineering Sciences, 365(1858):2359–2376, SEP 15 2007. ISSN 1364-

X. doi: {10.1098/rsta.2007.2013}.

P.-F. Liu, T.-R. Wu, F. Raichlen, C. Synolakis, and J. Borrero. Runup and rundown generated by threedimensional

sliding masses. Journal of fluid Mechanics, 536:107–144, 2005.

P. L. F. Liu, Y.-S. Cho, M. J. Briggs, U. Kanoglu, and C. E. Synolakis. Runup of solitary waves on a circular

island. Journal of Fluid Mechanics, 302:259–285, 1995. doi: 10.1017/S0022112095004095.

F. Løvholt, G. Pedersen, C. B. Harbitz, S. Glimsdal, and J. Kim. On the characteristics of landslide tsunamis.

Phil. Trans. R. Soc. A, 373(2053):20140376, 2015. doi: {10.1098/rsta.2014.0376}.

P. Lynett and P. L. F. Liu. A numerical study of the run-up generated by three-dimensional landslides.

Journal of Geophysical Research-Oceans, 110(C3), MAR 8 2005. ISSN 0148-0227. doi: {10.1029/

JC002443}.

B. C. McFall and H. M. Fritz. Physical modelling of tsunamis generated by three-dimensional deformable

granular landslides on planar and conical island slopes. In Proc. R. Soc. A, volume 472, page 20160052.

The Royal Society, 2016.

F. Mohammed and H. M. Fritz. Physical modeling of tsunamis generated by three-dimensional deformable

granular landslides. Journal of Geophysical Research: Oceans (1978–2012), 117(C11), 2012.

F. Montagna, G. Bellotti, and M. Di Risio. 3d numerical modeling of landslide-generated tsunamis around

a conical island. Natural hazards, 58(1):591–608, 2011.

A. Panizzo, P. De Girolamo, M. Di Risio, A. Maistri, and A. Petaccia. Great landslide events in italian

artificial reservoirs. Natural Hazards and Earth System Science, 5(5):733–740, 2005. doi: 10.5194/

nhess-5-733-2005.

E. Pelinovsky and A. Poplavsky. Simplified model of tsunami generation by submarine landslides. Physics

and Chemistry of The Earth, 21(1 - 2):13 – 17, 1996.

E. Renzi and P. Sammarco. Landslide tsunamis propagating around a conical island. Journal of Fluid

Mechanics, 650:251–285, MAY 10 2010. ISSN 0022-1120. doi: {10.1017/S0022112009993582}.

A. Romano. Landslide-generated tsunamis around a conical island: The edge waves role. In The Twentyfourth

International Ocean and Polar Engineering Conference. International Society of Oshore and

Polar Engineers, 2014.

A. Romano, G. Bellotti, and M. Di Risio. Wavenumber–frequency analysis of the landslide-generated

tsunamis at a conical island. Coastal Engineering, 81:32–43, 2013.

A. Romano, M. Di Risio, G. Bellotti, M. Molfetta, L. Damiani, and P. De Girolamo. Tsunamis generated

by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model

validation. Landslides, 13(6):1379–1393, 2016.

P. Sammarco and E. Renzi. Landslide tsunamis propagating along a plane beach. Journal of Fluid Mechanics,

:107–119, MAR 10 2008. ISSN 0022-1120. doi: {10.1017/S0022112007009731}.

C. E. Synolakis, J.-P. Bardet, J. C. Borrero, H. L. Davies, E. A. Okal, E. A. Silver, S. Sweet, and D. R.

Tappin. The slump origin of the 1998 papua new guinea tsunami. Proceedings of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences, 458(2020):763–789, 2002. doi:

1098/rspa.2001.0915.

S. Tinti, A. Manucci, G. Pagnoni, A. Armigliato, and F. Zaniboni. The 30 December 2002 landslide-induced

tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Natural

Hazards and Earth System Science, 5(6):763–775, Oct 2005. URL http://hal.archives-ouvertes.fr/

hal-00299290.

S. Tinti, G. Pagnoni, and F. Zaniboni. The landslides and tsunamis of the 30th of december 2002 in

stromboli analysed through numerical simulations. Bulletin of Volcanology, 68:462–479, 2006. ISSN

-8900. URL http://dx.doi.org/10.1007/s00445-005-0022-9. 10.1007/s00445-005-0022-9.

F. Ursell. Edge waves on a sloping beach. Proceedings of the Royal Society of London. Series A. Mathematical

and Physical Sciences, 214(1116):79–97, 1952. doi: 10.1098/rspa.1952.0152.

P. Watts. Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway, Port,

Coastal, and Ocean Engineering, 124(3):127–137, 1998. doi: 10.1061/(ASCE)0733-950X(1998)124:

(127).

P. Watts, S. Grilli, D. Tappin, and G. Fryer. Tsunami generation by submarine mass failure. ii: Predictive

equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6):298–

, 2005. doi: 10.1061/(ASCE)0733-950X(2005)131:6(298).

H. Yeh, P. L. F. Liu, M. Briggs, and C. E. Synolakis. Propagation and amplification of tsunamis at coastal

boundaries. Nature, 372(6504):353–355, Nov. 1994. doi: 10.1038/372353a0.

G. Zitti, C. Ancey, M. Postacchini, and M. Brocchini. Impulse waves generated by snow avalanches:

Momentum and energy transfer to a water body. Journal of Geophysical Research: Earth Surface, 2016.




DOI: https://doi.org/10.9753/icce.v35.currents.14