ENHANCED FIELD OBSERVATION BASED PHYSICAL AND NUMERICAL MODELLING OF TSUNAMI INDUCED BOULDER TRANSPORT PHASE 1: PHYSICAL EXPERIMENTS

Jan Oetjen, Max Engel, Helmut Brückner, Shiva P. Pudasaini, Holger Schüttrumpf

Abstract


Coasts around the world are affected by high-energy wave events like storm surges or tsunamis. By focusing on tsunami impacts, we investigate tsunami-induced transport of boulders by an interdisciplinary combination of field observations, laboratory experiments and advanced numerical modelling. In phase 1 of the project we conduct physical laboratory experiments based on real-world data. Following the experimental phase we will develop an enhanced numerical boulder transport model (BTM) based on an existing two-phase model.

Keywords


tsunami; boulder transport; physical experiments; numerical modelling

Full Text:

PDF

References


Barkan, R., ten Brink, U. (2010), Bulletin of the Seismological Society of America 100 (3), 995-1009.

Benner, R., Browne, T., Brückner, H., Kelletat, D., Scheffers, A. (2010), Boulder transport by waves: Progress in physical modelling. Zeitschrift für Geomorphologie 54, Suppl. 3, 127–146.

Bressan, L., Antonini, A., Gaeta, M.G., Guerrero, M., Miani, M., Petruzzeli, V., Samaras, A. (2015), Boulder transport by tsunamis: A laboratory experiment on incipient motion. Geophysical Research Abstracts 17, EGU2015-935.

Granja Bruña, J.I., Carbó-Grosabel, A., Llanes Estrada, P., Muñoz-Martin, A., ten Brink, U.S., Gómez Ballesteros, M., Druet, M., Pazos, A. (2014), Morphostructure at the junction between the Beata ridge and the Greater Antilles island arc (offshore Hispaniola southern slope). Tectonophysics 618, 138-163.

Deltares (2014a), Delft3D-FLOW: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Deltares, Netherlands.

Deltares (2014b), DelftDashboard. https://publicwiki.deltares.nl/display/OET/DelftDashboard.

Deng, Z.D., Lu, J., Myjak, M.J., Martinez, J.J., Tian, C., Morris, D.J., Carlson, T.J., Zhou, D., Hou, H. (2014), Design and implementation of a new autonomous sensor fish to support advanced hydropower development. Review of Scientific Instruments 85, 115001.

Engel, M. (2012), The chronology of prehistoric high-energy wave events (tropical cyclones, tsunamis) in the southern Caribbean and their impact on coastal geo-ecosystems – a case study from Bonaire (Leeward Antilles). Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät, Universität zu Köln, URL: http://kups.ub.uni-koeln.de/4710/ (last access 8th June 2015).

Engel, M., Brückner, H., (2011). The identification of palaeo-tsunami deposits – a major challenge in coastal sedimentary research. Coastline Reports 17, 65–80.

Engel, M., Brückner, H., Messenzehl, K., Frenzel, P., May, S.M., Scheffers, A., Scheffers, S., Wennrich, V., Kelletat, D. (2012), Shoreline changes and high-energy wave impacts at the leeward coast of Bonaire (Netherlands Antilles). Earth, Planets and Space 64: 905–921.

Engel, M., Brill, D., May, S.M., Reyes, M., Brückner, H. (2014), Philippinen: "Haiyans" Erbe. Geographische Rundschau 66 (6), 54–57.

Etienne, S., Buckley, M., Paris, R., Nandasena, A.K., Clark, K., Strotz, L., Cagué-Goff, C., Goff, J., Richmond, B. (2011), The use of boulders for characterizing past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth-Science Reviews 107, 76–90.

GEBCO (2014), The GEBCO One Minute Grid. http://www.gebco.net/data_and_products/gridded_bathymetry_data/.

Gornak, T. (2013), A goal oriented survey on immersed boundary methods. Berichte des Fraunhofer Techno- und Wirtschaftsmathematik, 235, ISSN 1434-9973.

Goto, K., Okada, K., Imamura, F. (2010), Numerical analysis of boulder transport by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Marine Geology 268, 97–105.

Hisamatsu, A., Goto, K., Imamura, F. (2014), Local plaeao-tsunami size evaluation using numerical modelling for boulder transport at Ishigaki Island, Japan. Episodes 37(4), 265–276.

Huntington, K., Bourgeois, J., Gelfenbaum, G., Lynett, P., Jaffe, B., Yeh, H., Weiss, R. (2007), Sandy signs of a tsunami’s onshore depth and speed. Eos 88, 577–578.

Imamura, F., Goto, K., Ohkubo, S. (2008), A numerical model of the transport of a boulder by tsunami. Journal of Geophysical Research – Oceans 113, C01008.

Intergovernmental Oceanographic Commission (2012), Exercise Caribe Wave/Lantex 13. A Caribbean Tsunami Warning Exercise, 20 March 2013. Volume 1: Participant Handbook. IOC Technical Series No. 101. Paris, UNESCO.

Iglberger, K., Rüde, U. (2009), Massively Parallel Rigid Body Dynamics Simulations. Computer Science - Research and Development 23 (3), 159-167.

Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E. (2008), Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org.

Knutson, R.T., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., KossinN, J.P., Srivastava, A.K., Sugi, M. (2010), Tropical cyclones and climate change. Nature Geoscience 3, 157–163.

Lander, J.F., Whiteside, L.S., Lockridge, P.A. (2002), A brief history of tsunamis in the Caribbean Sea. Science of Tsunami Hazards 20, 57-94.

Liu, H., Sakashita, T., Sato, S. (2014), An experimental study on the tsunami boulder movement. Coastal Engineering Proceedings 34, currents. 16.

Martinez, C., Garcia-Martinez, R., Miralles-Wilhelm, F. (2011), A two-phase debris flow model with boulder transport. International Journal of Safety and Security Engineering, 1(4), 389–402.

Nandasena, N.A.K., Paris, R., Tanaka, N. (2011a), Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Marine Geology 281, 70–84.

Nandasena, N.A.K., Paris, R., Tanaka, N. (2011b), Numerical Assessment of boulder transport by the 2004 Indian Ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Computers & Geosciences 37, 1391–1399.

Nandasena, N.A.K., Tanaka, N. (2013), Boulder transport by high energy: Numerical model-fitting experimental observations. Ocean Engineering 57, 163–179.

Neumann, B., Vafeidis, A.T., Zimmermann, J., Nicholls, R.J. (2015), Future coastal population growth and exposure to sea-level rise and coastal flodding – a global assessment. PLOS ONE 10 (3), e0118571.

NOAA (2014). Natural Hazard Viewer. http://maps.ngdc.noaa.gov/viewers/hazards/.

Noormets, R., Crook, K.A.W., Felton, E.A, (2004), Sedimentology of rocky shorelines: 3. Hydrodynamics of megaclast emplacement and transport on a shore platform, Oahu, Hawaii. Sedimentary Geology 172, 41–65.

Oetjen, J., Engel, M., Effkemann, C., May, S.M., Pudasaini, S.P., Wöffler, T., Aizinger, V., Schüttrumpf, H., Brückner, H. (2015), Numerical modelling of tsunami scenarios for the island of Bonaire (Leeward Antilles). In: The 4th International Tsunami Field Symposium, 2015.

Peltzer, S. (2015), Planung, Entwurf, Konstruktion und Realisierung eines physikalischen Modellversuchs zur Generierung einer schiffserzeugten Primärwellenbelastung auf Strombauwerke an Wasserstraßen. Master Thesis, Faculty of Civil Engineering, RWTH Aachen University (unpublished).

Penchev, V. (2008), Extreme solitary waves at restricted water depth. Coastlab08, Book of Abstracts, Nuova Editoriale, Italy.

Pignatelli, C., Sansó, P., Mastronuzzi, G. (2009), Evaluation of tsunami flooding using geomorphologic evidence. Marine Geology 260, 6–18.

Prizomwala, S.P., Gandhim, D., Ukey, V.M., Bhatt, N., Rastogi, B.K. (2015), Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: storm or palaeotsunami? Natural Hazards 75 (2), 1187–1203.

Pudasaini, S.P. (2012), A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface 117: F03010.

Scheffers, A. (2005), Coastal response to extreme wave events – hurricanes and tsunamis on Bonaire. Essener Geographische Arbeiten 37.

Spiske, M., Böröcz, Z., Bahlburg, H. (2008), The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the Lesser Antilles, southern Caribbean. Earth and Planetary Science Letters 268: 384–396.

Sugawara, D., Minoura, K., Imamura, F. (2008), Tsunamis and tsunami sedimentology. In: Shiki, T., Tsuji, Y., Yamazaki, T., Minoura, K. (eds.), Tsunamiites – Features and Implications. Elsevier, Amsterdam, Oxford, pp. 9–49.

Sugawara, D., Goto, K., Jaffe, B.E. (2014), Numerical models of tsunami sediment transport – Current understanding and future directions. Marine Geology 352, 295–320.

Terry, J., Lau, A.Y.A., Etienne, S. (2013), Reef-Platform Coral Boulders – Evidence for High-Energy Marine Inundation Events on Tropical Coastlines. Springer, New York.

Vose, S.R., Applequist, S., Bourassa, M.A., Pryor, S.C., Barthelmie, R.J., Blanton, B., Bromirski, P.D., Brooks, H.E., De Gaetano, A.T., Dole, R.M., Easterling, D.R., Jensen, R.E., Karl, T.R., Katz, R.W., Klink, K., Kruk, M.C., Kunkel, K.E., Mac Cracken, M.C., Peterson, K.S., Thomas, B.R., Walsh, J.E., Wang, X.L., Wehner, M.F., Wuebbles, D.J., Young, R.S. (2014), Monitoring and understanding changes in extremes – extratropical storms, winds, and waves. Bulletin of the American Meteorological Society 95(3), 377–386.

Watt, S.G., Jaffe, B.E., Morton, R.A., Richmond, B.M., Gelfenbaum, G. (2010), Description of extreme-wave deposits on the northern coast of Bonaire, Netherlands Antilles. USGS Open-File Report 2010-1180.

Zainali, A., Weiss, R. (2015), Boulder dislodgement and transport by solitary waves: Insights from three-dimensional numerical simulations. Geophysical Research Letters 42, doi: 10.1002/2015GL063712.




DOI: https://doi.org/10.9753/icce.v35.management.4