INFLUENCE OF RETENTION AREAS ON THE PROPAGATION OF STORM SURGES IN THE WESER ESTUARY
ICCE 2014 Cover Image
PDF

Keywords

Weser estuary
retention areas
storm surges
design water levels

How to Cite

Zorndt, A., Goseberg, N., & Schlurmann, T. (2014). INFLUENCE OF RETENTION AREAS ON THE PROPAGATION OF STORM SURGES IN THE WESER ESTUARY. Coastal Engineering Proceedings, 1(34), management.51. https://doi.org/10.9753/icce.v34.management.51

Abstract

The hydrodynamics of estuaries are forced by the tides from the open sea and the river runoff from the catchment area. The hinterland is often low-lying and densely populated and must therefore be protected by dikes. Anthropogenic climate change poses new challenges to the coastal protection. However, changes in the geometry of the estuaries can have equally severe impacts on the deformation of a storm surge wave form when it propagates through the estuary. This affects the peak water levels and hence the design water levels. This contribution focuses on the influence of retention areas or forelands seaside of the main dike lines, which are protected by summer dikes against the less severe but more frequently occurring storm surges. This is shown at the example of a retention area in the Weser estuary, which has historically been the cite of a soccer stadium and thus hosts high values which stand in sharp contrast against the low safety level against flooding. The investigation is conducted with a 3D hydrodynamic numerical model which has previously been validated for the simulation of storm surges. The results show that even very small changes in the geometry of the estuary can have effects on design levels. This is even the case when they only regard the summer dike crests heights around retention areas and not their volume. Another important finding is that the geometry changes may have their maximum impacts quite far away from the specific river reach in which they are carried out. The results underline that for designing safe and reliable storm surge infrastructure, storm events should be studied in high resolution models which are able to resolve even small scale features such as summer dike lines.
https://doi.org/10.9753/icce.v34.management.51
PDF

References

Bilgili, A., K. W. Smith, and D. R. Lyncha. 2006. BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling, Computers & Geosciences, 32, 632-642.

Klingebiel, H.. 2006. Mythos Weser-Stadion, 80 Jahre Fußball, Kultur und Politik, Verlag die Werkstatt.

Knaack, H., R. Kaiser, G. Hartsuiker, R. Mayerle, and H. D.

Niemeyer. 2006. Ermittlung der Bemessungswasserstande fur die Unterweser mit mathematischen Modellen, Forschungsbericht 01/2006, Niedersachsischer Landesbetrieb fu ̈r Wasserwirtschaft, Kusten- und Naturschutz, Forschungsstelle Kuste.

Niedersachsischer Landesbetrieb fu ̈ Wasserwirtschaft, Kusten- und Naturschutz. 2007. Generalplan

Kustenschutz Niedersachsen/Bremen, Festland. Technical report, Niedersachsischer Landesbetrieb fur

Wasserwirtschaft, Kusten- und Naturschutz und Senator fur Bau, Umwelt und Verkehr.

Niemeyer,H.D..2007.ErmittlungdesrechnerischenBesticksanderUnterweserbeiBerucksichtigungen des neu festgesetzten Vorsorgemaßes fr sakularen Anstieg und Klimaanderungen, Niedersachsischer Landesbetrieb fur Wasserwirtschaft, Kusten- und Naturschutz, Forschungsstelle Kuste, Technical Note, 10/2007.

Niemeyer, H. D., R. Kaiser, H. Knaack, and M. Wittig. 2003. Ergebnisse der Untersuchungen zur Sturmflutsicherheit an der Unterweser (Niedersachsicher Teil), Dienstbericht der Forschungsstelle Kuste 09/2003.

Shewchuk, J. R.. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, Applied Computational Geometry: Towards Geometric Engineering, 1148, 203-222.

Spekker, H.. 2008. Steuerung von Kustenschutzelementen an Tideflu ̈ssen als Grundlage fu ̈r ein Hochwasser- und Risikomanagement, Mitteilungen des Franzius-Instituts fu ̈r Wasserbau und Ku ̈steningenieurwesen, Leibniz Universita ̈t Hannover,.

Thorenz, F.. 2008. Coastal Flood Defence and Coastal Protection along the North Sea Coast of Niedersachsen, Die Ku ̈ste, 74, 159-169.

Wetzel, V.. 1988. R. Schwab and W. Becker (Eds.), Jahrbuch der Hafenbautechnischen Gesellschaft,

Volume 42, Chapter Der Ausbau des Weserfahrwassers von 1921 bis heute, 1029-1136. Springer Berlin Heidelberg.

Zhang, Y. and A. M. Baptista. 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation, Ocean Modelling, 21, 71-96.

Zhang, Y., R. C. Witter, and G. R. Priest. 2011. Tsunami-tide interaction in 1964 Prince William Sound tsunami, Ocean Modelling, 40, 246-259.

Zorndt, A. C. and T. Schlurmann. 2014. Investigating impacts of climate change on the Weser Estuary, Die Kuste, 80, in print.

Zorndt, A. C., T. Schlurmann, and I. Grabemann. 2012. The influence of extreme events on hydrodynamics and salinities in the Weser estuary in the context of climate impact research, Proceedings of the International Conference on Coastal Engineering, 33, 1-12.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.