### ON WAVE-DRIVEN “SHINGLE” BEACH DYNAMICS IN A TABLE-TOP HELE-SHAW CELL

#### Abstract

different versions of the Hele-Shaw cell have been constructed. Construction can be inexpensive thus yielding an

accessible and flexible coastal engineering demonstration as well as research tool. Beach evolution is sufficiently fast

and can start very far from equilibrium, allowing an unusually large dynamical range to be investigated.

#### Keywords

#### Full Text:

PDF#### References

Bakhtyar, R., Barry, D.A., and Kees, C.E. 2012. Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach. Adv. Water Res. 48, 66–78.

Batchelor, G.K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press. 635 pp.

Battjes, J. 1974. Surf similarity. Proc. 14th Int. Coastal Eng. Conf. Copenhagen. 466–480.

Bokhove, O. and Peregrine, D.H. 1998. Vorticity and surf zone currents. Proc. 26th Int. Coastal Eng. Conf. Copenhagen. 745–758.

Bokhove, O., Zwart, V., and Haveman, M.J., 2010. Fluid Fascinations. Stichting Qua Art Qua Science, University of Twente, The Netherlands. The Hele-Shaw experiment was shown at a public lecture of O.B. and Valerie Zwart on 17-01-2010, and built by O.B. and W.Z. in 2x12hrs in the prior weekend, http://eprints.eemcs.utwente.nl/17393/

Calantoni, J. Puleo, J.A., and Holland, K.T. 2006. Simulation of sediment motions using a discrete particle

model in the inner surf and swash-zones. Cont. Shelf Res. 26, 1987–2001.

Cooker, M. 2010. A commemoration of Howell Peregrine 2007–2010. J. Eng. Math. 67, 1–9.

Deen, N.G., Kriebitzsch, S.H.L., Hoef, M.A. van der, and Kuipers, J.A.M. 2012. Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chemical Eng. Science 81, 329–344.

Dumbser, M. 2011. A simple two-phase method for the simulation of complex free surface flows. Comp.

Methods Applied. Mech. Eng. 200, 9–12.

Gagarina, E., Ambati, V.R., Van der Vegt, J.J.W., and Bokhove O. 2014. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves. J. Comp. Phys. 275, 459–483.

Garnier, R., Dodd, N., Falquez, A., and Calvete, D. 2010. Mechanisms controlling crescentic bar amplitude. J. Geophys. Res. 115, F02007.

Hele-Shaw, H.S. 1898. The flow of water. Nature 58. 520–520.

Helluy, P., Golay, F., Caltagirone, J.-P., Lubin, P., Stéphane Vincent, S., Drevard, D., Marcer, R., Philippe Fraunié, Seguin, N., Grilli, S., Lesage, A.-C., and Dervieux, A. 2005. Numerical simulations of wavebreaking. ESAIM: Math. Modelling Numerical Analysis 39-2, 591–607.

Horn, van der, A.J. 2012. Beach Evolution and Wave Dynamics in a Hele-Shaw Geometry. M.Sc. Thesis,

Department of Physics, University of Twente.

Lachaume, C., Biausser, B., Grilli, S.T., Fraunie, P., and Guignard, S. 2003. Modeling of breaking and post-breaking waves on slopes by coupling of BEM and VOF methods. In Proc. 13th Offshore and Polar

Engng. Conf. (ISOPE03, Honolulu, USA, May 2003), 353-359.

Lamb, H. 1993. Hydrodynamics. Cambridge University Press. 738 pp.

Lee, A.T., Ramos, E., and Swinney, H.L. 2007. Sedimenting sphere in a variable-gap Hele-Shaw cell. J.

Fluid Mech. 586, 449–464.

McCall, R.T., van Thiel de Vries, J.S.M., Plant, N.G., van Dongeren, A.R., Roelvink, J.A., Thompson, D.M., and Reniers, A.J.H.M. 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Rosa Island. Coastal. Eng. 57, 668–683.

Miles, J. 1977. On Hamilton’s principle for surface waves. J. Fluid. Mech. 27, 395–397.

Operational models 2014. Delft3D. Software on morphology by Deltares: http://www.deltaressystems.com

Open Telemac-Mascaret: http://www.opentelemac.org/ XBeach: http://oss.deltares.nl/web/xbeach/

Pedlosky, J. 1987. Geophysical Fluid Dynamics. Springer. 701 pp.

Peregrine, D.H. 1983. Breaking waves on beaches. Ann. Rev. Fluid Mech. 15, 149–178.

Plouraboué, F. and Hinch, E.J., 2002. Kelvin-Helmholtz instaility on a Hele-Shaw cell. Phys. Fluids 14,

–929.

Powell, K.A. 1990. Predicting short term profile response for shingle beaches. HR Wallingford. Online

Report.

Rajchenbach, J. Lerouz, A., and Clamond, D. 2011. New standing solitary waves. Phys. Rev. Lett. 107,

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., and Lescinkski, J. 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Eng. 56, 1133–1152.

Short, A.D. 2000. Handbook of Beach and Shore-face Dynamics. Wiley. 379 pp.

Soulsby, R. 1997. Dynamics of Marine Sands. In: HR Wallingford. Thomas Telford. 249 pp.

Thornton, A.R., Gray, J.M.N.T, and Hogg, A.J. 2006. Three-Phase Model of Segregation in Granular

Avalanche Flows. J. Fluid Mech. 550, 1–25.

Thornton, A.R., Van der Horn, A.J., Gagarina, E., Zweers, W., Van der Meer, D., and Bokhove, O. 2014. Hele-Shaw beach creation by breaking waves: a mathematics-inspired experiment. J. Environmental Fluid Dynamics 14, 1123–1145.

Vega, J.M., Knobloch E., and Martel, C. 2001. Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Physica D 154, 313–336.

Vella, D. and Mahadevan, L. 2005. The ‘Cheerios Effect’. American J. Physics 73, 817–825.

Williams, J.J., De Algria-Arzburu A.R., McCall, R.T., and Van Dongeren, A. 2012. Modelling gravel barrier profile response to combined waves and tides using XBeach: laboratory and field results. Coast. Eng. 63,

–80.

Wilson, S.K. and Duffy, B.R. 1998. On lubrication with comparable viscous and inertia forces. Q.J. Mech. Appl. Math. 51, 105–124.

DOI: https://doi.org/10.9753/icce.v34.sediment.41