MODELLING VERTICAL VARIATION OF TURBULENT FLOW ACROSS A SURF ZONE USING SWASH

Marcel Zijlema

Abstract


This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to propagation of irregular waves in a barred surf zone, and the model results are discussed by comparing against an extensive laboratory data set. This study focus not only on wave transformation in the surf zone, but also on the numerical prediction of undertow and vertical distribution of turbulence levels under broken waves. Present simulations demonstrate the overall predictive capabilities of the model in computing breaking surf zone waves.

Keywords


surf zone; wave breaking; undertow; turbulence modelling; SWASH

Full Text:

PDF

References


M. Boers. Surf zone turbulence. Ph.D. thesis, Delft University of Technology, 2005.

S. Bradford. Numerical simulation of surf zone dynamics. J. Waterw. Port Coast. Ocean Eng., 126:1–13,

E. Christensen, D.-J. Walstra, and N. Emerat. Vertical variation of the flow across the surf zone. Coast.

Engng., 45:169–198, 2002.

B. Launder. Turbulence modeling in the vicinity of a wall. In S. Kline, B. Cantwell, and G. Lilley, edi- tors, Complex turbulent flows: comparison of computation and experiment, volume II, pages 691–699, Stanford University Press, Stanford, CA, 1982.

B. Launder and D. Spalding. The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. Engng., 3:269–289, 1974.

P. Lin and P.-F. Liu. A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359:239–264, 1998.

A. J. H. M. Reniers, E. L. Gallagher, J. H. MacMahan, J. A. Brown, A. A. van Rooijen, J. S. M. van Thiel de Vries, and B. C. van Prooijen. Observations and modeling of steep-beach grain-size variability. J. Geophys. Res. Oceans, 118:577–591, 2013.

D. Rijnsdorp, P. Smit, and M. Zijlema. Non-hydrostatic modelling of infragravity waves under laboratory conditions. Coast. Engng., 85:30–42, 2014.

G. Stelling and S. Duinmeijer. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43:1329–1354, 2003.

J. Van der Werf, K. Neessen, J. Ribberink, and W. Kranenburg. Wave breaking effects on mean surf zone hydrodynamics. In Coastal Dynamics 2013, pages 1763–1774, Bordeaux University - SHOM, 2013.

Z. Wang, Q. Zou, and D. Reeve. Simulation of spilling breaking waves using a two phase flow CFD model. Comput. Fluids, 38:1995–2005, 2009.

I. Wenneker, A. van Dongeren, J. Lescinski, D. Roelvink, and M. Borsboom. A Boussinesq-type wave driver for a morphodynamical model to predict short-term morphology. Coast. Engng., 58:66–84, 2011.

Q. Zhao, S. Armfield, and K. Tanimoto. Numerical simulation of breaking waves by a multi-scale turbu- lence model. Coast. Engng., 51:53–80, 2004.

M. Zijlema and G. Stelling. Further experiences with computing non-hydrostatic free-surface flows involv- ing water waves. Int. J. Numer. Meth. Fluids, 48:169–197, 2005.

M. Zijlema and G. Stelling. Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coast. Engng., 55:780–790, 2008.

M. Zijlema, G. Stelling, and P. Smit. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Engng., 58:992–1012, 2011.




DOI: https://doi.org/10.9753/icce.v34.waves.3