PHYSICAL MODELING OF SAND LIQUEFACTION UNDER WAVE BREAKING ON A VERTICAL WALL
ICCE 2012 Cover Image
PDF

Keywords

soil fluidization
pore pressure
momentary liquefaction
gas content

How to Cite

Michallet, H., Rameliarison, V., Berni, C., Bergonzoli, M., Barnoud, J.-M., & Barthelemy, E. (2012). PHYSICAL MODELING OF SAND LIQUEFACTION UNDER WAVE BREAKING ON A VERTICAL WALL. Coastal Engineering Proceedings, 1(33), structures.78. https://doi.org/10.9753/icce.v33.structures.78

Abstract

The wave induced liquefaction at a coastal structure is studied. Experiments in a glass-wall flume filled with a partially saturated bed of light-weight sediment are presented. Single wave loadings are simulated. For large enough wave height conditions an excess pore pressure is recorded within the soil and a liquefaction threshold is reached. Velocity fields obtained from video recordings display large zones of the bed that behave as a fluid. Phases of soil compaction and dilatancy are identified.
https://doi.org/10.9753/icce.v33.structures.78
PDF

References

Bonjean, D., P. Foray, I. Piedra-Cueva, H. Michallet, P. Breul, Y. Haddani, M. Mory, and S. Abadie. 2004. Monitoring of the foundations of a coastal structure submitted to breaking waves: Occurrence of momentary liquefaction, Proc. 14th Int. Offshore Polar Eng. Conf., ISOPE, Volume 2, 585-592.

Breul, P., Y. Haddani, and R. Gourv`es. 2008. On site characterization and air content evaluation of coastal soils by image analysis to estimate liquefaction risk, Can. Geotech. J., 45(12), 1723-1732.http://dx.doi.org/10.1139/T08-090

Chareyre, B., A. Cortis, E. Catalano, and E. Barth'elemy. 2012. Pore-scale modeling of viscous flow and induced forces in dense sphere packings, Transport in Porous Media, 92, 473-493.http://dx.doi.org/10.1007/s11242-011-9915-6

de Groot, M. B., M. B. Bolton, P. Foray, P. Meijers, A. C. Palmer, R. Sandven, A. Sawicki, and T. C. Teh. 2006. Physics of liquefaction phenomena around marine structures, J. Waterw. Port Coastal Ocean Eng., 132(4), 227-243.http://dx.doi.org/10.1061/(ASCE)0733-950X(2006)132:4(227)

Grasso, F., H. Michallet, E. Barth'elemy, and R. Certain. 2009. Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states., J. Geophys. Res., 114, C09001, Michallet, H., E. Catalano, C. Berni, B. Chareyre, V. Rameliarison, and E. Barth'elemy. 2012. Physical and numerical modelling of sand liquefaction in waves interacting with a vertical wall, Proc. 6th Int. Conf. on Scour and Erosion, ICSE6-274. doi: 10.1029/2009JC005308.http://dx.doi.org/10.1029/2009JC005308

Michallet, H., M. Mory, and I. Piedra-Cueva. 2009. Wave-induced pore pressure measurements near a Mory, M., H. Michallet, D. Bonjean, I. Piedra-Cueva, J.-M. Barnoud, P. Foray, S. Abadie, and P. Breul. 2007. A field study of momentary liquefaction caused by waves around a coastal structure, J. Waterw. Port Coastal Ocean Eng., 133(1), 28-38. coastal structure, J. Geophys. Res., 114, C06019, doi: 10.1029/2008JC005071.http://dx.doi.org/10.1029/2008JC005071

Peregrine, D. H. 2003. Water-wave impact on walls, An. Rev. Fluid Mech., 35, 23-43.http://dx.doi.org/10.1146/annurev.fluid.35.101101.161153

Sakai, T., K. Hatanaka, and H. Mase. 1992. Wave-induced effective stress in seabed and its momentary liquefaction, J. Waterw. Port Coastal Ocean Eng., 118(2), 202-206.http://dx.doi.org/10.1061/(ASCE)0733-950X(1992)118:2(202)

Sumer, B. M., R. J. S. Whitehouse, and A. Torum. 2001. Scour around coastal structures: A summary of recent research, Coastal Eng., 53, 965-982.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.