METHOD TO PREDICT LONG TIME SPAN OF SCOUR AROUND OFFSHORE WIND TURBINE FOUNDATIONS
ICCE 2012 Cover Image
PDF

Keywords

scour
monopile
CFD
current
sediment transport

How to Cite

Dixen, M., Lohmann, I. P., & Christensen, E. D. (2012). METHOD TO PREDICT LONG TIME SPAN OF SCOUR AROUND OFFSHORE WIND TURBINE FOUNDATIONS. Coastal Engineering Proceedings, 1(33), sediment.88. https://doi.org/10.9753/icce.v33.sediment.88

Abstract

A new method to predict scour development around offshore structures has been developed. The method has been tested on a monopile. The method consists of table of scour rates, which is used to predict the scour development around the structure at different stages of the scour hole. The scour rate tables have been made based on full 3D numerical simulations of the flow and sediment transport for fixed configurations of the scour hole. When changing the governing parameters which are causing the scour development around the structure, the erosion rate or backfilling rate can be calculated from the mass balance of the sediment. This leads to the scour rates tables that are used to analyses the development of the scour hole under different current conditions. The method has been tested against experimental scour data and showed very promising results.
https://doi.org/10.9753/icce.v33.sediment.88
PDF

References

Breusers, H. N. C., Nicollet, G. & Shen, H. W. 1977. Local scour around cylindrical piers. J. Hydraul. Res. 15, 211-252.http://dx.doi.org/10.1080/00221687709499645

Breusers, H. N. C. & Raudkivi, A. J. 1991. Scouring. A. A. Balkema, Rotterdam.

Dargahi, B. 1982. Local scour around bridge piers - A review of practice and theory. Bull. 114, Hydraulics Laboratory, Royal Institute of Technology, Stockholm, Sweden.

Hoffmans, G. J. C. M. & Verheij, H. J. 1997. Scour Manual. A. A. Balkema, Rotterdam.

Kovacs, A., and Parker, G. (1994). A new vectorial bedload formulation and its application to the time evolution of straight river channels. Journal of fluid Mechanics vol. 257, pp. 153-183http://dx.doi.org/10.1017/S002211209400114X

Melville, B. W. & Coleman, S. E. 2000 Bridge Scour. Water Resources, LLC, CO, USA

Menter, F. R. 1993 Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper 93-2906, AIAA 24th Fluid Dynamic Conference, July 6-9, 1993, Orlando, Florida.

Nielsen, A.W. and Hansen, E.A., (2007): Time-varying wave and current-induced scour around offshore wind turbines. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2007, June 10-15, 2007, San Diego, California, USA

Raaijmakers, T. and Rudolph, D. (2008): Time-dependent scour development under combined current and waves conditions - laboratory experiments with online monitoring technique. Fourth International Conference on scour and erosion, ICSE-4, 2008, Tokyo, Jaopan.

Richardson, E. V. & Davies, S. R. 1995 Evaluating Scour at Bridges. 3rd edn. US Department of Transportation, HEC 18, FHWA-IP-90-017.

Roulund, A., Sumer, B.M., Fredsøe, J. and Michelsen, J. (2005). "Numerical and experimental investigation of flow and scour around a circular pile", J. Fluid Mechanics,vol. 534, 351-401.http://dx.doi.org/10.1017/S0022112005004507

Sumer, B. M., Chua, L. H. C., Cheng, N.-S. Fredse, J. (2003). "The influence of turbulence on bedload sediment transport", J. Hydraul. Engng ASCE 129(8).http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:8(585)

Sumer, B. M. & Fredsøe, J. 1997 Hydrodynamics Around Cylindrical Structures. World Scientific.

PMid:9116532

Whitehouse, R. 1998 Scour at Marine Structures. Thomas Telford.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.