NON-HYDROSTATIC MODELLING OF INFRAGRAVITY WAVES USING SWASH
ICCE 2012 Cover Image
PDF

Keywords

infragravity waves
non-hydrostatic modelling
nearshore wave transformation
SWASH

How to Cite

Rijnsdorp, D. P., Smit, P. B., & Zijlema, M. (2012). NON-HYDROSTATIC MODELLING OF INFRAGRAVITY WAVES USING SWASH. Coastal Engineering Proceedings, 1(33), currents.27. https://doi.org/10.9753/icce.v33.currents.27

Abstract

This paper presents numerical modelling of the nearshore transformation of infragravity waves induced by bichromatic wave groups over a horizontal and a sloping bottom. The non-hydrostatic model SWASH is assessed by comparing model predictions with analytical solutions over a horizontal bottom and with detailed laboratory observations for a sloping bottom. Good agreement between model predictions and data is found throughout the domain for bound infragravity waves. Furthermore the model predicts greater outgoing free infragravity wave-heights for steeper slope regimes which is consistent with the measurements. The model however tends to overestimate the magnitude of the outgoing infragravity waves.
https://doi.org/10.9753/icce.v33.currents.27
PDF

References

Battjes, J.A., H.J. Bakkenes, T.T. Janssen and A.R. Van Dongeren. 2004. Shoaling of subharmonic gravity waves, Journal of Geophysical Research, 109 (C2).http://dx.doi.org/10.1029/2003JC001863">http://dx.doi.org/10.1029/2003JC001863

Bowers, E.C. 1977. Harbour resonance due to set-down beneath wave groups, Journal of Fluid Mechanics, 79, 71-92http://dx.doi.org/10.1017/S0022112077000044">http://dx.doi.org/10.1017/S0022112077000044

Bromirski, P.D., O.V. Sergienko and D.R. MacAyeal. 2010. Transoceanic infragravity waves impacting Antarctic ice shelves, Geophysical Research Letters, 37 (L02502).

Lin, P. and P.L.-F. Liu. 1998. A numerical study of breaking waves in the surf zone, Journal of Fluid Mechanics, 359, 239-264http://dx.doi.org/10.1017/S002211209700846X">http://dx.doi.org/10.1017/S002211209700846X

Longuet-Higgins, M.S. and R.W. Stewart. 1960. Changes in the form of short gravity waves on long waves and tidal currents, Journal of Fluid Mechanics, 8, 565-583.http://dx.doi.org/10.1017/S0022112060000803">http://dx.doi.org/10.1017/S0022112060000803

Longuet-Higgins, M.S. and R.W. Stewart. 1962. Radiation stress and mass transport in gravity waves with application to surf beats, Journal of Fluid Mechanics, 13, 481-504.http://dx.doi.org/10.1017/S0022112062000877">http://dx.doi.org/10.1017/S0022112062000877

Ma G., F. Shi and J.T. Kirby. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43-44. 22-35http://dx.doi.org/10.1016/j.ocemod.2011.12.002">http://dx.doi.org/10.1016/j.ocemod.2011.12.002

Madsen, P.A., R. Murray and O.R.Sørenson. 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15, 371-388http://dx.doi.org/10.1016/0378-3839(91)90017-B">http://dx.doi.org/10.1016/0378-3839(91)90017-B

Naciri, M., B. Buchner, B. Bunnik, T. Huijsmans and R. Andrews. 2004. Low frequency motions of LNG carriers in shallow water. Proceedings Offshore Mechanics & Arctic Engineering Conference.

PMid:15155674 PMCid:415699

Roelvink, J.A., A.J.H.M . Reniers, A.R. van Dongeren, J.S.M. van Thiel de Vries, R.T. McCall and J. Lescinski. 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56, 1133-1152http://dx.doi.org/10.1016/j.coastaleng.2009.08.006">http://dx.doi.org/10.1016/j.coastaleng.2009.08.006

Smit P.B., M. Zijlema and G. Stelling. 2012. Depth-induced wave breaking in a non-hydrostatic, nearshore wave model. submitted to Coastal Engineering (under revision).

Stelling G. and M. Zijlema. 2003. An accurate and efficient finite-difference algorithm for nonhydrostatic free-surface flow with application to wave propagation, International Journal for Numerical Methods In Fluids, 43, 1-23.http://dx.doi.org/10.1002/fld.595">http://dx.doi.org/10.1002/fld.595

Symonds, G., D.A. Huntly and A.J. Bowen. 1982. Two-dimensional surf beat: long wave generation by a time-varying breakpoint, Journal of Geophysical Research, 87, 492-498.http://dx.doi.org/10.1029/JC087iC01p00492">http://dx.doi.org/10.1029/JC087iC01p00492

Van Noorloos, J.C. 2003. Energy transfer between short wave groups and bound long waves on a plane slope, M. S. thesis Delft University of Technology, 68 pp.

Van Dongeren, A., J. Battjes, T. Janssen., J. Van Noorloos, K. Steenhauer, G. Steenbergen and A. Reniers. 2007. Shoaling and shoreline dissipation of low-frequency waves, Journal of Geophysical Research, 112 (C2).http://dx.doi.org/10.1029/2006JC003701">http://dx.doi.org/10.1029/2006JC003701

Zijlema, M., G.S. Stelling, P.B. Smit. 2011. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters, Coastal Engineering, 58, 992-1012.http://dx.doi.org/10.1016/j.coastaleng.2011.05.015">http://dx.doi.org/10.1016/j.coastaleng.2011.05.015

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.