Philippe Larroude, Thibault Oudart


The objective of this paper is to try a new approach to simulate the interactions between waves and algae. The chosen method is to simulate waves and plants through SPH (Smoothed Particle Hydrodynamics, SPH). In this model, the algae are defined as a solid that respects Hook's law, which is in direct interaction with the fluid part. Given the properties of this method especially in terms of computation time, the dimensions of the simulations are limited. A successful representation of the movement of algae under waves or/and current by SPH will permit the determination of coefficient of friction corresponding to a type of algae, that can be used in a different larger scale code.


Fluid-Structure Interaction; SPH model; Wave attenuation

Full Text:



Agamloh E.,Wallace A., von Jouanne A., "Application of Fluid Structure Interaction Simulation of an Ocean Wave Energy Extraction Device," American Institute of Aeronautics and Astronautics 25th

Wind Energy Symposium (including revolutionary ocean energy concepts), January 2006

Amini Y., Emdad H. and Farid M.(2011) A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method, European Journal of Mechanics B/Fluids 30 pp.184–194http://dx.doi.org/10.1016/j.euromechflu.2010.09.010

Antoci C., Gallati M. and Sibilla S., (2007), Numerical simulation of fluid–structure interaction by SPH, Computers and Structures 85 pp. 879–890http://dx.doi.org/10.1016/j.compstruc.2007.01.002

Crespo, A.J., M. Gómez-Gesteira, and R.A. Dalrymple, "Boundary Conditions Generated by Dynamic Particles in SPH Methods", CMC: Computers, Materials, & Continua, 5, 3, 173-184, 2007.

Dalrymple R.A., Kirby J.T. and Hwang P.A. (1984). 'Wave Diffraction Due to Areas of Energy Dissipation', Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 110, Issue 1, pp. 67-79.http://dx.doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67)

Dalrymple, R.A. and B.D. Rogers, "Numerical Modeling of Water Waves with the SPH Method," Coastal Engineering, 53/2-3, 141-147, 2006.http://dx.doi.org/10.1016/j.coastaleng.2005.10.004

Farhat, C., Van der Zee K.,Geuzaine P., Provable second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, J. Comput. Methods Appl. Mech. Engrg., 195, pp. 1973–2001 (2006)

Fonseca M.S., Cahalan J.H. (1992). 'A preliminary evaluation of wave attenuation by four species of Seagrass', Estuarine, Coastal and Shelf Science, 35 (6), pp. 565-576.http://dx.doi.org/10.1016/S0272-7714(05)80039-3

Folkard, A.M. 2005 Hydrodynamics of model Posidonia oceanica patches in shallow water, Limnology and Oceanography. 50: 1592-1600http://dx.doi.org/10.4319/lo.2005.50.5.1592

Gingold, R.A. Monaghan, J.J. 1977 Smoothed particle hydrodynamics: theory and application to nonspherical stars, Mon. Not. R. Astron. Soc. 181: 375–389.

Gómez-Gesteira, M. Rogers, B.D. Dalrymple, R.A., Crespo A.J.C. and Narayanaswamy, M. 2010, User Guide for the SPHysics Code v2.0,

Gray, J.P. Monagahn, J.J. Swift, R.P. 2001. SPH elastic dynamics. Comp Methods Appl Mech Eng; 190: 6641-6662.http://dx.doi.org/10.1016/S0045-7825(01)00254-7

Ha, Y.D. Kim, M.G. Kim, H.S and Cho, S. 2011 Shape design optimization of SPH fluid–structure interactions considering geometrically exact interfaces, Struct Multidisc Optim, 44:319–336.http://dx.doi.org/10.1007/s00158-011-0645-8

Hérault, A. Bilotta, G. Dalrymple, R.A. Rustico, E. Del Negro, C. GPUSPH (Version 2.0) (Software) Available from www.ce.jhu.edu/dalrymple/GPUSPH

Kobayashi N., Raichlen A.W., Asano T. (1993). 'Wave Attenuation by Vegetation', Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 119, Issue 1, pp. 30-48.http://dx.doi.org/10.1061/(ASCE)0733-950X(1993)119:1(30)

Le Tallec, P. Mouro, J. 2000 Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 2000:1–29.

Leimkuhler, B. J. Reich, S. Skeel, R.D. 1997 Integration Methods for Molecular dynamic IMA Volume in Mathematics and its application. Springer

Liu, G.R. 2003. Mesh Free methods: Moving beyond the finite element method. CRC Press, 692.

Lucy, L.B. 1977. A numerical approach to the testing of the fission hypothesis, Astron. J. 82: 1013–http://dx.doi.org/10.1086/112164

Luhar, M. and Nepf, H. M. 2011 Flow-induced reconfiguration of buoyant and flexible aquatic vegetation, J of Limnology and Oceanography, 56: Issue 1, 2003-2017.http://dx.doi.org/10.4319/lo.2011.56.6.2003

Mendez, F.J. and Losada I.J. 2004 An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields, Coastal Engineering, 51: Issue 2, 103-118.http://dx.doi.org/10.1016/j.coastaleng.2003.11.003

Monaghan, J. J. 1982. Why particle methods work. Siam J. Sci. Stat. Comput. 3: 422-433.http://dx.doi.org/10.1137/0903027

Monaghan, J. J. Gingold, R.A. 1983. Shock simulation by the particle method SPH. J. Comp. Phys. 52: 374-389.http://dx.doi.org/10.1016/0021-9991(83)90036-0

Monaghan, J.J. Lattanzio, J.C., 1985. A refined method for astrophysical problems. Astron. Astrophys. 149: 135–143.

Monaghan, J. J. 1989. On the problem of penetration in particle methods. J.Computational Physics, 82: 1-15.http://dx.doi.org/10.1016/0021-9991(89)90032-6

Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual Rev. Astron. Appl., 30: 543- 574.http://dx.doi.org/10.1146/annurev.aa.30.090192.002551

Monaghan, J. J. 1994. Simulating free surface flows with SPH. Journal Computational Physics, 110: 399- 406.http://dx.doi.org/10.1006/jcph.1994.1034

Monaghan J. J. and Kocharyan A. 1995. SPH simulation of multi-phase flow. Computer Physics Communication, 87:225-235.http://dx.doi.org/10.1016/0010-4655(94)00174-Z

Monaghan, J. J. and Kos, A. 1999. Solitary waves on a Cretan beach. J. Wtrwy. Port, Coastal and Ocean Engrg., 125: 145-154.http://dx.doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)

Monaghan, J.J., Cas, R.A.F. Kos, A.M. Hallworth, M. 1999 Gravity currents descending a ramp in a stratified tank. J Fluid Mech, 379:39–69.http://dx.doi.org/10.1017/S0022112098003280

Monaghan, J. J. 2005. Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68: 1703-1759.http://dx.doi.org/10.1088/0034-4885/68/8/R01

Morris, J. P. Fox, P. J. Zhu, Y. 1997. Modeling low Reynolds number incompressible flows using SPH, J. Comp. Phys. 136: 214-226.http://dx.doi.org/10.1006/jcph.1997.5776

Prinos, P. Koftis, T. Galiatsatou, P. 2010 Wavelet analysis of wave propagation over Posidonia oceanica. Proceedings on the Third International Conference on the Application of Physical Modelling to Port and Coastal Protection, COASTLAB

Randles, P.W. Libersky, L.D. 1996 Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng ; 139 :375-Rogers, B.D. and Dalrymple, R.A. 2008 SPH Modeling of tsunami waves, Advances in Coastal and Ocean Engineering, Advanced Numerical Models for tsunami waves and run-up, World Scientific. 10

Rugonyi, S. Bathe, K.J. 2001 On finite element analysis of fluid flows fully coupled with structural interactions. Comput Model Eng Sci; 2: 195–212.

Sánchez-González, J.F. Sánchez-Rojas, V. Memos, C.D. 2011 Wave attenuation due to Posidonia oceanica meadows, Journal of Hydraulic Research Vol. 49, Iss. 4

Stratigaki, V., Manca, E., Prinos, P. (2010). Effects of Posidonia oceanica meadow on wave propagation, Large-scale experiments. Proc. 4th Int. Short Conf. Applied coastal res. Barcelona, 230–240.

Stratigaki V., Manca E., Prinos P., Losada I.J., Lara J.L., Sclavo M., Amos C.L., Cáceres I. and Sánchez-Arcilla A.(2011): Large-scale experiments on wave propagation over Posidonia oceanica, Journal of Hydraulic Research, 49:sup1, 31-43

Ward L.G., Kemp W.M., and Boynton W.E. (1984). 'The influence of waves and seagrass communities on suspended particulates in an estuarine embayment', Marine Geology, Vol. 59, pp. 85-103.http://dx.doi.org/10.1016/0025-3227(84)90089-6

DOI: https://doi.org/10.9753/icce.v33.waves.56