EFFECTS OF TIDE ON WAVES IN THE OUTER SEINE ESTUARY AND THE HARBOR OF LE HAVRE
ICCE 2012 Cover Image
PDF

Keywords

Bay of Seine
English Channel
Port 2000
Le Havre
current
refraction
ARTEMIS
TOMAWAC
SWAN
TELEMAC 2D
COHERENS

How to Cite

Guillou, N., & Chapalain, G. (2012). EFFECTS OF TIDE ON WAVES IN THE OUTER SEINE ESTUARY AND THE HARBOR OF LE HAVRE. Coastal Engineering Proceedings, 1(33), waves.47. https://doi.org/10.9753/icce.v33.waves.47

Abstract

The present study examines the influences of time-varying tide-induced water depths and currents on waves in the outer Seine estuary (southern central English Channel) and their penetration in the harbor of Le Havre and its new infrastructures Port 2000. The investigation is based on a numerical procedure which links regional phase-averaged wave modules with a local phase-resolving wave module within Port 2000 harbor. Required spatio-temporal evolutions of tidal free-surface elevation and current are computed by circulation modules. Numerical results of wave height are compared with field data collected at three wave buoys in the access harbor channel and its inner basin. Predictions exhibit a local increase (up to 30 %) of wave height induced by current refraction at slack tide in the access harbor channel. Respective mappings of the wave height modified by the tide, the water levels alone and the currents alone confirm this finding. The effect of currents on waves are pronounced along the southern breakwater of Port 2000 harbor and in the vicinity of coastal topographic features of the outer Seine estuary. Ultimate predictions of wave propagation within Port 2000 basin exhibit, however, the negligible direct influence of local ambient currents on wave height. Observed-semidiurnal wave-height variations in the inner basin are thus mainly associated with the propagation of the outer tide-induced modulation. Mappings of maximum wave-height within harbor basin reveal an increased exposition of the northern wharves at high tide and the southern western breakwater at low tide in relation to current-induced changes in the approaching-waves direction.
https://doi.org/10.9753/icce.v33.waves.47
PDF

References

Aelbrecht, A.M., 1997. ARTEMIS 3.0: A finite element model for predicting wave agitation in coastal areas and harbours including dissipation. In: Acinas, J.R. And Brebbia, C.A. (eds.), Computer Modelling of Seas and Coastal Regions III. International Conference. Southampton, United Kingdom: WIT Press, pp. 343-352.

Avoine, J. 1981. L'estuaire de la Seine: sédiments et dynamique sédimentaire. Thèse de doctorat de l'Université de Caen, 236 p.

Benoit, M., Marcos, F., and F., Becq. 1996. Development of a third generation shallow-water wave model with unstructured spatial meshing. In: Proceedings of the 25th International Conference on Coastal Engineering (Orlando, USA), pp. 465-478.

Berkhoff, J.C.W. 1976. Mathematical Models for Simple Harmonic Linear Water Waves. Wave Refraction and Diffraction, Publ. n°163, Delft Hydraulics Laboratory, Delft, The Netherlands.

PMid:786246

Berkhoff, J.C.W. 1972. Computation of combined refraction-diffraction. In: Proceedings of the 13th International Conference on Coastal Engineering (Vancouver, Canada), pp. 471-490.

Booij, N.R.C., Ris, R.C., and L.H., Holthuijsen. 1999. A third generation wave model for coastal regions. 1. Model description and validation. Journal of Geophysical Research. 104, 7649-7666.http://dx.doi.org/10.1029/98JC02622">http://dx.doi.org/10.1029/98JC02622

Booij, N.R.C. 1981. Gravity waves on water with nonuniform depth and current. Delft, the Netherlands: Technical University of Delft, doctoral thesis, 130 p.

Bouws, E., and G., Komen. 1983. On the balance between growth and dissipation in an extreme, depth-limited wind-sea in the southern North sea. Journal of Physical Oceanography, 13, 1653-1658.http://dx.doi.org/10.1175/1520-0485(1983)013<1653:OTBBGA>2.0.CO;2">http://dx.doi.org/10.1175/1520-0485(1983)013<1653:OTBBGA>2.0.CO;2

Chen, W., Panchang, V., and Z., Demirbilek. 2005. On the modeling of wave-current interaction using the elliptic mild-slope, wave equation. Ocean Engineering, 32, 2135-2164.http://dx.doi.org/10.1016/j.oceaneng.2005.02.010">http://dx.doi.org/10.1016/j.oceaneng.2005.02.010

Davidson, M.A., O'Hare, T.J., and K.J., George. 2008. Tidal modulation of incident wave heights: fact or fiction? Journal of Coastal Research, 2, 151-159, doi: 10.2112/06-0754.

De Girolamo, P., Kostense, J.K., and Dingemans, M.W. 1988. Inclusion of wave breaking in a mildslope model. In: Schrefler, B.A., Zienkiewicz, O.C. (eds.), Computer Modeling in Ocean Engineering. Rotterdam: Balkema, pp. 221-229.

EDF R&D (Electricité De France), 2010. Agitation d'un Plan d'Eau par la Houle. Logiciel ARTEMIS. Version 6. Notice Théorique et Manuel Utilisateur. 134 p.

Guillou, N., and G. Chapalain. 2012a. Modeling the tide-induced modulation of wave height in the outer Seine estuary. Journal of Coastal Research, 28(3), 613-623.http://dx.doi.org/10.2112/JCOASTRES-D-11-00075.1">http://dx.doi.org/10.2112/JCOASTRES-D-11-00075.1

Guillou, N. and G. Chapalain, 2012b. Modeling penetration of tide-influenced waves in Le Havre harbor. Journal of Coastal Research, 28(4), 945-955.http://dx.doi.org/10.2112/JCOASTRES-D-11-00192.1">http://dx.doi.org/10.2112/JCOASTRES-D-11-00192.1

Guillou, N., and G. Chapalain, 2010. Numerical simulation of tide-induced transport of heterogeneous sediments in the English Channel. Continental Shelf Research, 30, 806-819.http://dx.doi.org/10.1016/j.csr.2010.01.018">http://dx.doi.org/10.1016/j.csr.2010.01.018

Hervouet, J.M. 2003. Hydrodynamique des écoulements à surface libre. Modélisation numérique avec la méthode des éléments finis. Paris, France: Presses de l'Ecole Nationale des Ponts et Chaussées, 311 p.

PMid:12875839

Holthuijsen, L.H. 2007. Waves in oceanic and coastal waters. Cambridge, UK: Cambridge University Press, 387 p.http://dx.doi.org/10.1017/CBO9780511618536">http://dx.doi.org/10.1017/CBO9780511618536

Isaacson, M. 1991.Measurement of regular wave reflection. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(6), 553-569.http://dx.doi.org/10.1061/(ASCE)0733-950X(1991)117:6(553)">http://dx.doi.org/10.1061/(ASCE)0733-950X(1991)117:6(553)

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J., Fiorino, M., and G.L., Potter. 2002. NCEP-DOE AMIP II reanalysis (R-2). Bulletin of the American Meteorological Society, 83, 1631-1643.http://dx.doi.org/10.1175/BAMS-83-11-1631">http://dx.doi.org/10.1175/BAMS-83-11-1631

Le Hir, P., Bassoulet, P., and H., Jestin. 2001. Application of the continuous modeling concept to simulate high-concentration suspended sediment in a microtidal estuary. Coastal and Estuarine Fine Sediment Processes, 3, 229-247.http://dx.doi.org/10.1016/S1568-2692(00)80124-2">http://dx.doi.org/10.1016/S1568-2692(00)80124-2

Lesourd, S. 2000. Processus d'envasement d'un estuaire macrotidal : zoom temporel du siècle à l'heure; application à l'estuaire de la Seine. Doctoral thesis of the University of Caen, 280 p.

Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P., and K., Wild-Aden. 1999. COHERENS: A COupled Hydrodynamical-Ecological model for RegioNals and Shelf seas - Part III - Model Description (Available on CD-ROM via http://www.mumm.ca.be/coherens).Management Unit of the North Sea Mathematical Models, Report MAS3-CT97-0088, Belgique, 911 p.

Milbradt, P., and A. Pluß. 2003. Numerical modelling of wave current interaction in an estuary. Colombo, Sri Lanka: COPEDEC VI.

Pos, J.D. 1985. Asymmetrical breakwater gap wave diffraction using finite and infinite elements. Coastal Engineering, 9, 101-123.http://dx.doi.org/10.1016/0378-3839(85)90001-8">http://dx.doi.org/10.1016/0378-3839(85)90001-8

Rusu, L., Bernardino, M., and C. Guedes Soares. 2011. Modelling the influence of currents on wave propagation at the entrance of the Tagus estuary. Ocean Engineering, 38, 1174-1183.http://dx.doi.org/10.1016/j.oceaneng.2011.05.016">http://dx.doi.org/10.1016/j.oceaneng.2011.05.016

SHOM. 1996. Courants de marée en Baie de Seine de Cherbourg à Fécamp. Service Hydrographique et Océanographique de la Marine, 15 p.

Sørensen, O., Kofoed-Hansen, H., and O.P. Jones. 2006. Numerical modeling of wave-current interaction in tidal areas using an unstructured finite volume technique. Coastal Engineering, 653-665, doi: 10.1142/9789912709554 0056.

Signell, R.P., Beardsley, R.C., Graber, H.C., and A. Capotondi. 1990. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayment. Journal of Geophysical Research, 95, 9671-9678.http://dx.doi.org/10.1029/JC095iC06p09671">http://dx.doi.org/10.1029/JC095iC06p09671

Smith, R. and T., Sprinks. 1975. Scattering of surface waves by a conical island. Journal of Fluid Mechanics, 72, Part 2, 373-384.http://dx.doi.org/10.1017/S0022112075003424">http://dx.doi.org/10.1017/S0022112075003424

Thompson, E.F., Chen, H.S., and L.L., Hadley. 1996. Validation of numerical model for wind waves and swell in harbors. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(5), 245-257.http://dx.doi.org/10.1061/(ASCE)0733-950X(1996)122:5(245)">http://dx.doi.org/10.1061/(ASCE)0733-950X(1996)122:5(245)

Waeles, B. 2005. Modélisation morphodynamique de l'embouchure de la Seine. Thèse de doctorat de l'Université de Caen - Basse-Normandie, 230 p.

Wang, C.-H., Wai, W.-H., Onyx, Li, Y.-S.,and Y., Chen. 2006. Modelling of the wave-cuurent interaction in the Pearl River Estuary. Journal of Hydrodynamics, Ser. B., 18(3), Supplement 1, 159-165.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.