NONLINEAR COUPLING IN WAVES PROPAGATING OVER A BAR
PDF

Keywords

nonlinear wave coupling
nonlinear waves
wave propagation
bar

How to Cite

Eldeberky, Y., & Battjes, J. (1994). NONLINEAR COUPLING IN WAVES PROPAGATING OVER A BAR. Coastal Engineering Proceedings, 1(24). https://doi.org/10.9753/icce.v24.%p

Abstract

The degree of nonlinear coupling in a random wavefield propagating over and beyond a bar is examined using a physical wave flume as well as numerical simulations based on time-domain extended Boussinesq equations and their frequency-domain counter-part. The nonlinear phase speed is computed from the evolution of the nonlinear part of the phase function inherent in the frequencydomain model. Over the bar, the phase speeds of the higher harmonics are larger than the linear estimates due to the nonlinear couplings, resulting in virtually dispersionless propagation, while beyond the bar crest, nonlinear effects on the phase speed vanish rapidly, implying full release of bound harmonics. Quantitative measures of nonlinearity such as the skewness and asymmetry have also been determined. They have near-zero values in the deep-water region on either side of the bar and a pronounced peak over the bar. On the downwave side, the random wave field is found to be spatially homogeneous. This implies that it can be fully described by the energy density spectrum without additional phase information related to the bar location.
https://doi.org/10.9753/icce.v24.%25p
PDF
Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.