STUDY OF REFLECTION OF NEW LOW-REFLECTIVITY QUAY WALL CAISSON
Proceedings of the 32nd International Conference
PDF

Keywords

perforated breakwaters
wave reflection
neural network
caisson
low-reflectivity
quay wall

How to Cite

Garrido, J. M., Ponce de León, D., Berruguete, A., Martínez, S., Manuel, J., Fort, L., Yague, D., González-Escrivá, J. A., & Medina, J. R. (2011). STUDY OF REFLECTION OF NEW LOW-REFLECTIVITY QUAY WALL CAISSON. Coastal Engineering Proceedings, 1(32), structures.27. https://doi.org/10.9753/icce.v32.structures.27

Abstract

This paper presents a new low-reflectivity quay wall caisson based on the formation of cell circuits. The cell circuit lengths can be adapted to the specific wave climate conditions at the construction site to obtain the best performance. Results from physical model tests of conventional and cell circuit caissons are described, as well as the construction process and steel reinforcement, which turns out to be quite similar to highly reflective conventional caissons. Neural Network (NN) models are used to describe the nonlinear relationship observed between experimental coefficients of reflection (CR) and the structural and wave conditions for the new low reflectivity quay wall caisson.
https://doi.org/10.9753/icce.v32.structures.27
PDF

References

Bergmannn, H., and H. Omeraci. 2000. Wave loads on perforated caisson breakwaters, Proceedings of the 27th International Conference on Coastal Engineering, ASCE, 1622-1635.

Dhinakaran, G., V. Sundar, R. Sundaravadivelu, and K.U. Graw. 2002. Dynamic pressures and forces exerted on impermeable and seaside perforated semicircular breakwaters due to regular waves, Ocean Engineering, 29, 1981-2004.http://dx.doi.org/10.1016/S0029-8018(01)00106-8

Esteban, F., and R. Llamas. 2007. Estructura de baja reflexión. Patente de invención nº 2262405. Oficina española de patentes y marcas (in Spanish).

Franco, L. 1994. Vertical breakwaters: the Italian experience, Coastal Engineering, 22, 31-55.http://dx.doi.org/10.1016/0378-3839(94)90047-7

Fugazza M., and L. Natale. 1992. Hydraulic performance of perforated breakwater, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 118, 1-14.http://dx.doi.org/10.1061/(ASCE)0733-950X(1992)118:1(1)

Garrido, J.M., and J.R. Medina. 2006. Study of Reflection of Perforated Vertical Breakwaters, Proceedings of the 30th International Conference on Coastal Engineering, ASCE, 2165-2177.

Garrido, J.M., and J.R. Medina. 2007. Modelo Neuronal para Estimar la Reflexión del Oleaje en Diques Verticales Antirreflejantes. Libro de Ponencias de las IX Jornadas Españolas de Costas y Puertos, AZTI-Tecnalia, 486-495 (in Spanish).

Hagiwara K. 1984. Analysis of upright structure for wave dissipation using integral equation, Proceedings of the 19th International Conference on Coastal Engineering, ASCE, 2810-2826.

Jarlan, G.E. 1961. A perforated vertical breakwater, The Dock and Harbour Authority, 41(486), 394-398.

Jarlan, G.E. 1965. The application of acoustic theory to the reflective properties of coastal engineering structures, Quarterly Bulletin, National Research Council Canada, 23-64.

Jianyi, W. 1992. Experimental study of perforated caisson breakwater, China Ocean Engineering, 6, 65-78.

Kakuno S., G. Tsujimoto, and Y. Shiozaki. 2003. A design method for double slit-wall breakwaters, Proceedings of the International Conference on Coastal Structures 2003, ASCE, 295-304.

Kondo H. 1979. Analysis of breakwaters having two porous walls, Proceedings of the International Conference on Coastal Structures 1979, 962-977.

Marks, W., and G.E. Jarlan. 1968. Experimental studies on a fixed perforated breakwater, Proceedings of the 11th International Conference on Coastal Engineering, ASCE, 1121-1140.

Martinez, S., J. Manuel, D. Yague, J.M. Garrido, D. Ponce de León, A. Berruguete, J.A. González-Escrivá, and J.R. Medina. 2010. Designing a new low-reflectivity quay wall caisson. Proceedings of the PIANC MMX Congress Liverpool, paper N. 146.

Medina, J.R. 2001. Estimation of incident and reflected waves using simulated annealing, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 127, 213-221.http://dx.doi.org/10.1061/(ASCE)0733-950X(2001)127:4(213)

Medina, J.R., González-Escrivá, J.A., Garrido, J.M. and De Rouck, J. 2002. "Overtopping analysis using neural networks". Proc. ICCE 2002, ASCE, pp. 2165-2177.

Medina, J.R, J.A. González-Escrivá, L. Fort, S. Martínez, C. Dolores, D. Ponce de León, J. Manuel, D.

Yague, J.M. Garrido, and A. Berruguete. 2009. Estructura Marítima Vertical con Cámaras de Unidades Múltiples para la Atenuación de la Reflexión de Oleaje. Patent ES200931049 presented at Spanish Patent Office (in Spanish).

Suh, K.D., and W.S. Park. 1995. Wave reflection from perforated-wall caisson breakwaters, Coastal Engineering, 26, 177-193.http://dx.doi.org/10.1016/0378-3839(95)00027-5

Tabet-Aoul, E., and E. Lambert. 2003. Tentative new formula for maximum horizontal wave forces acting on perforated breakwater caisson, Journal of Waterway, Port, Coastal, and Ocean Engineering, 129, 34-40.http://dx.doi.org/10.1061/(ASCE)0733-950X(2003)129:1(34)

Takahashi S., and S. Hosoyamada. 1994. Hydrodynamic characteristics of sloping-top caissons, Proceedings of International Conference on Hydro-technical Engineering for Port and Harbour Construction, PHRI, 1994.

Takahashi, S., 1996. Design of vertical breakwater, Reference Document, No. 34, Port and Harbour Research Institute.

Takahashi, S., Y. Kotake, R. Fujiwara, and M. Isobe. 2002. Performance evaluation of perforated-wall caissons by VOF numerical simulations, Proceedings of the 28th International Conference on Coastal Engineering, ASCE, 1365-1376.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.