Bastien Caplain, Dominique Astruc, Vincent Regard, Frédéric Moulin


Laboratory experiments have been performed in a wave flume to investigate the coastal cliff recession under regular waves forcing. The different processes of the cliff erosion cycle are described and we focus on bottom evolution, which seem mostly depend on the surf similarity parameter ξ. We observed steep planar (ξ > 0.7), gentle planar (0.5 < ξ < 0.7) and bared (ξ < 0.5) profiles. We noticed different sandbar dynamics including either steady or unsteady self-sustained oscillating states. Then we estimate the role of the self-organized material on the cliff recession rate. We show that the cliff erosion increases with the wave energy flux and is stronger for a gentle planar profile than for a bared profile of bottom morphology. However, the cliff recession rate as a function of the cliff height is not monotonic due to a different dynamics of bottom morphologies.


cliff erosion; bottom morphology; experimental modeling; beach ridge

Full Text:



Certain, R. and Barusseau, J.-P. 2005. Conceptual modeling of sand bars morphodynamics for a microtidal beach (Sète, France). Bull Soc. Géol. Fr, 176(4), 343-354.http://dx.doi.org/10.2113/176.4.343

Collins, B.D. and Sitar, N. 2008. Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA. Geomorphology, 97, 483-501.http://dx.doi.org/10.1016/j.geomorph.2007.09.004

Damgaard, J.S. and Dong, P. 2004. Soft cliff recession under oblique waves: physical model tests. Journal of waterway, port, coastal and ocean engineering, 234-242.http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:5(234)

Dean, R.G. 1991. Equilibrium beach profiles: Characteristics and applications. Journal of Coastal Research, 7(1), 53-84.

Gallagher, E.L., Elgar, S. and Guza, R.T. 1998. Observations of sand bar evolution on a natural beach. Journal of Geophys. Res., 103(C2), 3203-3215.http://dx.doi.org/10.1029/97JC02765

Grasso, F., Michallet, H., Barthélemy, E. and Certain, R. 2009. Physical modeling of intermediate cross-shore beach morphology: transients and equilibrium states. Journal of Geophys. Res., 114.

Hoyng, C. 2008. Erosive and accretive coastal response. M. Sc. Thesis, WL Delft Hydraul., Deltft, Netherlands.

Kamalinezhad, M. 2004. Plages en équilibre morphologique et hydrodynamique associée. PhD Thesis, Institut National Polytechnique de Grenoble, France.

Kanyaya, J.I. and Trenhaile, A.S. 2005. Tidal wetting and drying on shore platforms: an experimental assessment. Geomorphology, 70, 129. http://dx.doi.org/10.1016/j.geomorph.2005.04.005

Larson, M. and Kraus, N.C. 1994. Temporal and spatial scales of beach profile change, Duck, North Carolina. Marine Geology, 117, 75-94. http://dx.doi.org/10.1016/0025-3227(94)90007-8

Mansard, E.P.D. and Funke, E.R. 1980. The measurement of incident and reflected spectra using a least squares method. Proc. 17 th Int. Conf. Coastal Eng., ASCE, New York, 154-172.

Nesteroff, W.D. and Mélières, F. 1967. L'érosion littorale du pays de Caux. Bull Soc. Géol. Fr, 7, 159-169.

Ruessink, B.G., Walstraa, D.J.R. and Southgate, H.N. 2003. Calibration and verification of a parametric wave model on barred beaches. Coastal Engineering, 48, 139-149.http://dx.doi.org/10.1016/S0378-3839(03)00023-1

Wang, T. and Kraus, N.C. 2005. Beach profile equilibrium and patterns of wave decay and energy dissipation across the surf zone elucidated in a large-scale laboratory experiment. Journal of Coastal Research, 21(3), 522-534. http://dx.doi.org/10.2112/03-003.1

Wright, L.D. and Short, A.D. 1984. Morphodynamic variability of surf zones and beaches: A synthesis.

DOI: http://dx.doi.org/10.9753/icce.v32.sediment.53