Torsten Schlurmann, Widjo Kongko, Nils Goseberg, Danny Hilman Natawidjaja, Kerry Sieh


Near-field tsunami propagation both in shallow water environments and bore-like wave propagation on land are conducted in this
study to obtain fundamental knowledge on the tsunami hazard potential in the city of Padang, Western Sumatra, Republic of
Indonesia. As the region proves a huge seismic moment deficit which has progressively accumulated since the last recorded
major earthquakes in 1797 and 1833, this investigation focuses on most reasonable seismic sources and possibly triggered nearshore
tsunamis in order to develop upgraded disaster mitigations programs in this densely-populated urban agglomeration located
on the western shore of Sumatra Island. Observations from continuous Global Positioning Satellite (cGPS) systems and
supplementary coral growth studies confirm a much greater probability of occurrence that a major earthquake and subsequent
tsunami are likely to strike the region in the near future. Newly surveyed and processed sets of geodata have been collected and
used to progress most plausible rupture scenarios to approximate the extent and magnitudes of a further earthquake. Based upon
this novel understanding, the present analysis applies two hydronumerical codes to simulate most probable tsunami run-up and
subsequent inundations in the city of Padang in very fine resolution. Run-up heights and flow-depths are determined stemming
from these most plausible rupture scenarios. Evaluation of outcome and performance of both numerical tools regarding impacts
of surge flow and bore-like wave fronts encountering the coast and inundating the city are thoroughly carried out. Results are
discussed not only for further scientific purposes, i.e. benchmark tests, but also to disseminate main findings to responsible
authorities in Padang with the objective to distribute the most probable dataset of plausible tsunami inundations as well as to
address valuable insights and knowledge for effective counter measures, i.e. evacuation routes and shelter building. Following
evacuation simulations based on rational assumptions and simplifications reveal a most alerting result as about 260.000 people
are living in the highly exposed potential tsunami inundation area in the city of Padang of which more than 90.000 people will
need more than 30 min. to evacuate to safe areas.


tsunami hazard modeling; risk assessment; coastal development; integrated coastal zone management

Full Text:



Bernard, E. N., Mofjeld, H. O., Titov, V., Synolakis, C. E. and F. I. Gonzalez. 2006. Tsunami: scientific frontiers, mitigation, forecasting and policy implications. Phil. Trans. R. Soc. A, Vol. 364, pp. 1989–2007


Birkmann, J., Dech, S., Goseberg, N., Lämmel, G., Moder, F., Nagel, K., Oczipka, M., Schlurmann, T., Setiadi, N., Siegert, F., Strunz, G. and H. Taubenböck, H., 2008a. Numerical Last-Mile Tsunami Early Warning and Evacuation Information System, Proc. International Conference on TsunamiWarning (ICTW), Bali, Indonesia, 12 pp., 12–14 November 2008

Birkmann, J., Setiadi, N. and N. Gebert,2008b. Socio-economic vulnerability assessment at the local level in context of tsunami early warning and Evacuation planning in the city of Padang, West Sumatra, Proc. International Conference on TsunamiWarning (ICTW), Nusa Dua, Bali, Indonesia, 12–14 November 2008

Börner, A., Hirschmüller, H., Scheibe, K., Suppa, M. and J. Wohlfeil. 2008. MFC - A Modular Line Camera for 3D World Modulling. Lecture Notes in Computer Science, Vol. 4931, pp. 319-326

Borrero, J. C., Sieh, K., Chlieh, M., and C. E. Synolakis. 2006. Tsunami inundation modeling for Western Sumatra, Proceedings of the National Academy of Sciences of the United States of America, Vol. 103 (52), pp. 19673-19677

PMid:17170141 PMCid:1750885

Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H. and J. Galetzka. 2006. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Geophysical Research, 2008, 113

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and D. Alsdorf. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics 45, RG2004, DOI:10Ð1029/2005RG000183

Gisler, G. 2008. Tsunami simulations. Annual Review of Fluid Mechanics. Vol. 40, pp. 71–90

Goseberg, N., Stahlmann, A., Schimmels, S. and T. Schlurmann. 2009. Highly-resolved numerical modeling of tsunami run-up and inundation scenario in the city of Padang, West Sumatra. Proc. of the 31 st International Conference on Coastal Engineering (ICCE2008), American Society of Civil Engineers (ASCE), pp. 27-40

Goseberg, N. and T. Schlurmann. 2010. Numerical and physical study on tsunami run-up and inundation influenced by macro-roughness elements. Proc. 32 nd International Conference on Coastal Engineering (ICCE2010), American Society of Civil Engineers (ASCE), (this issue)

Goto, C. and Ogawa, Y. and Shuto, N. and Imamura, N. 1997. MG-35 - IUGG/IOC Time project: Numerical method of tsunami simulation with the leap-frog scheme, UNESCO/IOC report no. 35

Imamura, F., Bernard, E. N. & Robinson, A. R. (Eds.). 2009. Tsunamis: Ideas and Observations on Progress in the Study of the Seas. Chap. 10 – Tsunami Modeling: Calculating inundation and hazard maps, Harvard Univ. Press, 15, 321-332

IOC, IHO and BODC, 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K.

Karvonen, T., Hepojoki, A., Kotola, J. and H.-K. Huhta. 2000. RESCDAM - The use of physical models in dam-break flood analysis, Final report of Helsinki University of Technology King, D. N. and J. R Goff. 2010. Benefitting from differences in knowledge, practice and belief: Māori oral traditions and natural hazards science. Nat. Hazards Earth Syst. Sci., 10, pp. 1927-1940

Konca, O. A., Avouac, J.-P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., Li, Z., Galetzka, J., Genrich, J., Chlieh, M., Natawidjaja, D. H., Bock, Y., Fielding, E. J., Ji, C. and D. V. Helmberger. 2008. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, Vol. 456, Issue 7222, pp. 631-635


Lauterjung, J., Münch, U. and A. Rudloff. 2010. The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia, Nat. Hazards Earth Syst. Sci., 10, pp. 641-646

Mansinha, L. and D.E. Smylie. 1971. The Displacement Fields of Inclined Faults. Bulletin of the Seismological Society of America, Vol. 61(5): pp. 1433-1440

McCloskey, J., Antonioli, A., Piatanesi, A., Sieh, K., Steacy, S., Nalbant, S. S., Cocco, M., Giunchi, C., Huang, J. D. and P. Dunlop. 2007. Near-field propagation of tsunamis from megathrust earthquakes, Geophysical Research Letters, 34, L14316

McCloskey, J., Antonioli, A., Piatanesi, A., Sieh, K., Steacy, S., Nalbant, S., Cocco, M., Giunchi, C., Huang, J. D. and P. Dunlop. 2008. Tsunami threat in the Indian Ocean from a future megathrust earthquake west of Sumatra. Earth and Planetary Science Letters, Vol. 265, Issues 1-2, pp. 61-81

McCaffrey, R. 2007. The next Great Earthquake, Science, Vol. 315, pp. 1675-1676


Nielsen, O., Roberts, S., Gray, D., McPherson, A. and A. Hitchman. 2005. Hydrodynamic modelling of coastal inundation. In: Zerger, A., Argent, R.M. (Editors), Modelling and Simulation Society of Australia and New Zealand: MODSIM 2005 International Congress on Modelling and Simulation Modelling and Simulation Society of Australia and New Zealand Okal, E. A. and C. E. Synolakis. 2008. Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 172 (3), pp. 995-1015

Schiermeier, Q. 2009. Tsunami Watch. Nature. Vol 462, pp. 968-969, doi:10.1038/462968a

Schlurmann, T., Goseberg, N., Taubenböck, H., Setiadi, N., Lämmel, G., Moder, F., Oczipka, M., Klüpfel, H., Wahl, R., Strunz, G., Birkmann, J., Nagel, K., Siegert, F., Lehmann, F., Dech, S., Gress, A. and R. Klein. 2010. Numerisches Last-Mile Frühwarn- und Evakuierungsinformationssystem. BMBF Abschlussbericht, Förderkennzeichen 03G0666A-H (in German)

Sieh, K., 2006. Sumatran megathrust earthquakes – from science to saving lives. Philosophical Transactions of the Royal Society A, Vol. 364, pp. 1947–1963.


Sieh, K., Natawidjaja, D.H., Meltzner, A.J., Shen, C.-C., Cheng, H., Li, K.-S., Suwargadi, B.W., Galetzka, J., Philibosian, B., R.L. Edwards. 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra, Science, 322 (5908), pp. 1674-1678.


Spahn, H., Hoppe, M., Vidiarina, H. D., and Usdianto, B.: Experience from three years of local capacity development for tsunami early warning in Indonesia: challenges, lessons and the way ahead, Nat. Hazards Earth Syst. Sci. (NHESS), Vol. 10, pp. 1411-1429

Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J.-P., Bock, Y., Sieh, K., Meltzner, A.J., Natawidjaja, D.H., McCaffrey, R. 2006. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature, 440 (7080), pp. 46-51.


Synolakis, C. E. and E. Bernard. 2006. Tsunami science before and beyond Boxing Day 2004. Philosophical Transactions of the Royal Society A, Vol. 364, pp. 2231–2265.


Taubenböck, H., Goseberg, N., Setiadi, N., Lämmel, G., Moder, F., Oczipka, M., Klüpfel, H., Wahl, R., Schlurmann, T., Strunz, G., Birkmann, J., Nagel, K., Siegert, F., Lehmann, F., Dech, S., Gress, A. and R. Klein. 2009. Last-Mile preparation to a potential disaster - Interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia. Nat. Hazards Earth Syst. Sci. (NHESS), Vol. 9, pp. 1509–1528

Ward, S. N. and Day, S. 2008. Tsunami balls: A granular approach to tsunami runup and inundation. Communications in Computational Physics, 3(1), pp. 222-249

Zoppou, C. and S. Roberts. 1999. Catastrophic Collapse of Water Supply Reservoirs in Urban Areas.