Anna Christina Zorndt, Andreas Wurpts, Torsten Schlurmann, Nino Ohle, Thomas Strotmann


Large parts of the tidal estuary of river Elbe (Germany) are characterized by regular patterns of sand dunes. They are presumed to evolve due to complex sand transport mechanisms and show multi-faceted migration patterns. Direction and magnitude of their migration are influenced by hydrodynamic boundary conditions such as river runoff and tides. Dune Migration can lead to residual sand transport rates, depending on its direction and magnitude and the dune’s characteristics. The understanding of dune migration patterns and associated sand transport is the basis of an effective sediment management as well as an important requirement for planning offshore structures. This study focuses on methods for computing migration and sand transport rates in automated ways. In a comparison and validation of different approaches, a cross-correlation technique was found to produce best results. From a unique data set of up to six annual bathymetrical multi-beam soundings between 1995 and 2010, dune characteristics and migration rates were processed and analysed autonomously. The findings show that in a long perspective, average dune migration and sand transport rates in the present study reach are directed upstream.


Sand Dune; Dune Migration; Cross-Correlation Method; Sand Transport; Elbe Estuary

Full Text:



Amos, C. L. and E. L. King. 1984. Bedforms of the Canadian Eastern Seabord: A comparison with global occurances. Marine Geology 57: 167-208.http://dx.doi.org/10.1016/0025-3227(84)90199-3

Bartholomä, A., K. Schrottke and C. Winter. 2008. Sand Wave Dynamics- Surfing between assumptions and facts. Marine and River Dynamics: 17-24.

Dalrymple, R. W, R. J Knight and J. J Lambiase. 1978. Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275 (5676): 100-104. http://dx.doi.org/10.1038/275100a0

Duffy, Garret P. and John E. Hughes-Clarke. 2005. Application of spatial cross correlation to detection of migration of submarine sand dunes. Journal of Geophysical Research 110: F04S12.http://dx.doi.org/10.1029/2004JF000192

Führböter, A. 1967. Zur Mechanik der Strömungsriffel. Mitteilungen des Franzius-Instituts für Wasserbau und Küsteningenieurwesen der Technischen Universität Hannover 29.

Führböter, A. 1979. Strombänke (Grossriffel) und Dünen als Stabilisierungsformen. Mitteilungen des Leichtweiss-Instituts der Technischen Universität Braunschweig 67.

Gaeumann, D., and R. B Jacobson. 2007. Field Assessment of Alternative Bed-Load Transport Estimators. Journal of Hydraulic Engineering: 1319-1328.http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1319)

Knaapen, M. A. F. 2005. Sandwave migration predictor based on shape. Journal of Geophysical Research 110: FS0411.http://dx.doi.org/10.1029/2004JF000195

Mark, C. F. Van der and A. Blom. 2007. A new and widely applicable tool for determining the geometric properties of bedforms. University of Twente.

Masselink, Gerd, Laurie Cointre, Jon Williams, Roland Gehrels and Will Blake. 2009. Tide-driven dune migration and sediment transport on an intertidal shoal in a shallow estuary in Devon, UK. Marine Geology 262: 82-95.http://dx.doi.org/10.1016/j.margeo.2009.03.009

Milbradt, P., F. Sellerhoff and N. Krönert. 2004. KoDiBa Abschlussbericht - Entwicklung und Implementierung von Methoden zur Aufbereitung konsistenter digitaler Bathymetrien. imtg.bauinf.uni-hannover.de KFKI Signatur: E 35 237.

Nasner, Horst. 1974. Über das Verhalten von Transportkörpern im Tidegebiet. Mitteilungen des Franzius-Instituts für Wasserbau und Küsteningenieurwesen der Technischen Universität Hannover 40: 1-149.

Simons, D. B, E. V Richardson and C. F Nordin. 1965. Bedload equations for ripples and dunes. U. S. Geol. Surv. Prof. Pap. 462-H.

Villard, P.V. and M. Church. 2003. Dunes and associated sand transport in a tidally influenced sandbed channel: Fraser River, British Columbia. Can. J. Earth. Sci. 40 (September): 115-130. http://dx.doi.org/10.1139/e02-102

Zanke, Ulrich. 1982. Grundlagen der Sedimentbewegung. Springer-Verlag. PMid:7062987http://dx.doi.org/10.1007/978-3-642-68660-3

DOI: https://doi.org/10.9753/icce.v32.sediment.38