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EVOLUTION OF DAMAGED ARMOR LAYER PROFILE 

 

Ali Farhadzadeh1 , Nobuhisa Kobayashi1 and Jeffrey A. Melby2 

A probabilistic hydrodynamic model for the wet and dry zone on a permeable structure is developed to predict 

irregular wave action on the structure above the still water level. The model is based on the time-averaged continuity 

and momentum equations for nonlinear shallow-water waves coupled with the exponential probability distribution of 

the water depth. The model predicts the cross-shore variations of the mean and standard deviation of the water depth 

and horizontal velocity. Damage progression of a stone armor layer is predicted by modifying a formula for bed load 

on beaches with input from the hydrodynamic model. The damage progression model is compared with three tests by 

Melby and Kobayashi (1998) that lasted up to 28.5 hours. The model predicts the temporal progression of the eroded 

area quite well. The numerical model is very efficient and suited for a risk-based design of rubble mound structures. 

Keywords: rubble-mound breakwater; damage progression, coastal structure, wave-structure interaction, armor 

layer 

1. INTRODUCTION 

Rubble mound structures are widely used to protect the landward area including a port or harbor 

against wave attack mostly because they dissipate wave energy more effectively than impermeable 

structures. Design of rubble mound breakwaters has always been challenging because the wave 

hydrodynamics near and on the structures alters during storms as the breakwater profile changes. The 

traditional design methods for rubble mound breakwaters treat the wave hydrodynamics and the design 

of the armor layer separately. The wave-structure interaction and the armor layer profile change should 

be considered together in the design procedure.  

The advanced time-dependent hydrodynamic models for rubble mound structures try to predict the 

temporal and spatial variations of wave dynamics as accurately as possible. The more accurate 

hydrodynamic models, in general, require longer computation time. To reduce computation time 

considerably, Kobayashi et al. (2007) proposed a probabilistic model. The time-dependent wave 

variables are expressed using a probability distribution. The time-averaged governing equations are 

used to compute the hydrodynamic variables. The model was developed to include wave and current 

interaction (Farhadzadeh et al. 2007). Later, the probabilistic model was extended to the wet and dry 

zone in order to predict wave runup and overtopping (Kobayashi and Farhadzadeh 2008).  

Kobayashi and Otta (1987) developed a time-dependent model to predict the stone movement 

under regular wave attack. The model utilized the equation of motion for each individual armor unit in 

order to estimate the stone movement. The armor layer evolution then can be estimated by predicting 

the movement of all the individual stone units.  In practice, however, this approach has never been used 

probably because of its computation time.   

In the present study the probabilistic model for the wet and dry zone is extended to include the 

permeability effects. The new model is capable of predicting the wave and flow motion above and 

inside the permeable armor layer in the wet and dry zone. The probabilistic model for the permeable 

wet and dry model coupled with the permeable wet model can predict the irregular wave 

transformation and the flow hydrodynamic from the offshore boundary to the landward end of a rubble 

mound structure. The extended model provides the hydrodynamic input to a damage progression 

model, which is essentially a modified bed load transport model, to predict the slow evolution of an 

armor layer profile. 

2. TIME-AVERAGED PROBABILISTIC MODEL FOR PERMEABLE WET AND DRY ZONE 

A time-averaged probabilistic model is improved by developing a wet and dry model for 

permeable structures which is connected to the wet model developed by Kobayashi et al. (2007). The 

time-averaged cross-shore continuity and momentum equations for the nonlinear shallow-water waves 

is derived for the permeable wet and dry zone based on the assumption of the exponential probability 

distribution of water depth. These equations are coupled with the continuity and momentum equations 

for the flow inside the permeable layer. The model predicts the cross-shore variation of the mean and 

standard deviation of the water depth and velocity as well as the wet probability. The model is 

                                                           

 
1 

Center for Applied Coastal Research, University of Delaware, Newark, Delaware 19716, USA 
2
 US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, USA 



 COASTAL ENGINEERING 2010 
 

2 

compared with 52 experimental tests of wave overtopping on permeable structures (Kobayashi et al. 

2010).  

2.1. Model Description 

The numerical model assumes that the incident waves are normal to the structure which is uniform 

in the longshore direction. Fig. 1 shows the flow above and inside a permeable slope. The origin of the 

cross-shore coordinate system is located at the offshore boundary with the positive on-shore directed x-

coordinate. The vertical coordinate z is taken to be positive upward where the datum is z = 0.  

The still water level (SWL) above the datum denoted as S in Fig. 1 is allowed to vary in time during 

a storm or an experiment. The upper and lower boundaries of the permeable stone layer are located at   

z = zb(x) and zp(x), respectively, where the lower boundary is assumed to be impermeable to simplify 

the analysis. The mean water level (MWL) is located at       ̅  where  ̅ is the wave setup above 

SWL. The other variables in Fig. 1 are explained when they are introduced. 

 

 
Fig. 1. Flow variables in the porous wet and dry zone 

 

The time-averaged model for the wet permeable slope developed by Kobayashi et al. (2007) is 

modified using linear wave and current theory (e.g., Mei 1989) where wave overtopping induces 

onshore current. The time-averaged continuity, momentum, and wave action equations are used to 

predict the cross-shore variations of the mean  ̅ of the depth-averaged cross-shore velocity U, the mean 

 ̅ of the free surface elevation η above SWL, and the free surface standard deviation   . The overbar 

denotes time averaging. The root-mean-square (RMS) wave height is defined as      √    . Linear 

progressive wave theory is used locally to express the velocity standard deviation    in terms of   . 

The probability distributions of η and U are assumed to be Gaussian. The equivalency of the time 

averaging and probabilistic averaging is assumed to express the time-averaged terms in the governing 

equations in terms of  ̅,   ,  ̅ and   . The permeability effects are included in the same way as in 

Kobayashi et al. (2007). 

The equations used for the present computation are presented in the reports by Kobayashi and 

Farhadzadeh (2008) and Farhadzadeh et al. (2009). The landward-marching computation using this 

model for the wet zone is continued as long as the computed  ̅ and    are larger than 0.1 cm. The time-

averaged model for the wet zone cannot predict wave overtopping. Consequently, Kobayashi and de los 

Santos (2007) relied on empirical formulas for wave overtopping and seepage rates. Here, a separate 

model for the wet and dry zone is developed and connected with the model for the wet zone. This 

procedure is the same as that used by Kobayashi et al. (2010) for impermeable structures.  

2.2. Model Equations 
 The time-averaged cross-shore continuity and momentum equations derived from the nonlinear 

shallow-water wave equations on the permeable slope (Wurjanto and Kobayashi 1993) are expressed as  
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The continuity and approximate momentum equations for the flow inside the permeable layer are 

expressed as 
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where qp = time-averaged horizontal volume flux in the permeable layer;   
̅̅̅̅ = time-averaged horizontal 

discharge velocity;    and    = coefficients associated with the laminar and turbulent flow resistance, 

respectively; np= porosity of the permeable layer; Dn50 = nominal stone diameter; and υ = kinetic 

viscosity of the fluid.  Eq. (5) is based on the formula developed by van Gent (1995) and calibrated by 

Kobayashi et al. (2007). The resistance component associated with the oscillatory flow is simply 

neglected in Eq. (4) which is solved analytically to obtain the discharge velocity   
̅̅̅̅  driven by the 

horizontal pressure gradient due to  ̅    ̅        where  ̅ and zb vary with x.  It is noted that Eq. 

(4) retains only the leading terms in the horizontal momentum equation given by Wurjanto and 

Kobayashi (1993).   

Adding Eqs. (1) and (3) and integrating the resulting equation with respect to x, the vertically 

integrated continuity equation is obtained  

                                                                     
p ohU q q                                                                  (6) 

where the wave overtopping rate 
oq  is defined in this paper as the sum of the volume fluxes above and 

inside the permeable layer.  The volume flux 
pq  is estimated as 

                                                                  p w p p pq P U z                                                           (7) 

where Pw = wet probability defined as the ratio between the wet and entire durations:    ̅̅ ̅ = average 

water level inside the permeable layer; and zp = elevation of the impermeable lower boundary. To 

estimate the volume flux qp in Eq. (7),   
̅̅̅̅  is obtained using Eq. (4). In addition, the mean water level 

inside the permeable layer   ̅̅ ̅ needs to be predicted. The elevation   ̅̅ ̅ and zp are relative to the datum    

z = 0 in Fig. 1 and    ̅̅ ̅    ) is the thickness of water inside the permeable layer. The elevation   ̅̅ ̅ is 

estimated as  

                                               1 forp w b w p pP z P z z S                                                    (8) 

                                               1 forp w b w pP z P S z S                                                   (9) 

The upper bound of   ̅̅ ̅ for Pw = 1 is the upper boundary of the permeable layer located at z = zb. 

The lower bound of   ̅̅ ̅ for Pw = 0 is the higher elevation of the lower boundary zp of the permeable 

layer and the still water level S. The wet probability Pw in Eq. (7) ensures that qp = 0  if  Pw = 0. Eqs. (7) 

– (9) based on physical reasoning may be crude but are used along with Eqs. (4) and (5) to estimate qp 

for the known  ̅ and Pw. 

In order to account for both permeable layer thickness and wet probably, the last term in Eq. (2) is 

expressed as  
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with 

                                                          1p m mw w g                                                                (11) 

where 
m  is an empirical parameter that includes the effect of the permeable layer thickness. The 

empirical parameter for 
m  was based on wave overtopping data (Farhadzadeh et al. 2009). wm is the 

maximum downward seepage velocity due to the gravity force obtained analytically using Eq.(11).  

The seepage velocity wp is assumed to be of the order of wm or less.  The horizontal velocity ub at z = zb 

is assumed to be of the order of  
0.5

gh . Eq. (10) assumes that the downward flux of the horizontal 

momentum during the wet duration is much larger than the upward momentum flux from the 

permeable layer. Therefore, the upward momentum flux is assumed to have no contribution to the 

momentum equation.  

The cross-shore variation of the mean water depth  ̅ is obtained by solving the momentum 

equation (2) together with the continuity equation (6). Kobayashi et al. (1998) studied the probability 
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distributions of free surface elevations on a beach. They found that the probability distribution function  

f (h) in the lower swash zone can be presented in the form of an exponential function. This assumption 

simplifies the cross-shore model in the wet and dry zone. The exponential probability density function  

f (h) is expressed as  
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2
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The wet probability Pw equals the probability of the instantaneous water depth h > 0. As a result, 

the dry probability of h = 0 is equal to (1  Pw). The mean water depth for the wet duration is  ̅ but the 

mean depth for the entire duration is equal to    ̅.  

The free surface elevation η above SWL is given by            where zb and S are assumed 

to be invariant during the averaging.  The standard deviations of   and h are the same and given by  
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                                                     (14) 

which yields     ̅ for Pw = 1. This equality was supported by the depth measurement in the lower 

swash zone by Kobayashi et al. (1998) who assumed Pw = 1 in Eq. (12). 

The cross-shore velocity U may be related to the depth h in the wet and dry zone and expressed as 

                                                                        
sU gh U                                                          (15) 

where   = positive constant; and Us = steady velocity which is allowed to vary with x. The steady 

velocity Us is included to account for offshore return flow on the seaward slope and crest and the 

downward velocity increase on the landward slope. Holland et al. (1991) measured the bore speed and 

flow depth on a barrier island using video techniques and obtained      where the celerity and fluid 

velocity of the bore are assumed to be approximately the same. As a result, use may be made of   
   as a first approximation. Based on Eq. (15), the cross-shore velocity in the wet and dry zone 

increases as the water depth increases and approaches the steady velocity Us as the depth approaches 

zero. Using Eqs. (12) and (15), the mean  ̅ and standard deviation     of the cross-shore velocity U can 

be expressed as 
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Eqs. (14), (16) and (17) express   ,  ̅ and    in terms of  ̅, Pw and Us which vary with x. Eq. (15) 

is substituted into Eqs. (2) and (6) which are averaged for the wet duration using Eq. (12). The 

continuity equation (6) yields 
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where q = volume flux above the permeable layer.  After lengthy algebra, the momentum equation (2) 

is expressed as  
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where the parameter B is related to the momentum flux term on the left hand side of Eq. (2). The 

function Gb(r) in Eq. (19) is given by 
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where erf  is the error function.  The function 
bG increases monotonically with the increase of r. The 

values of 
bG  are equal to 0 and 1 for r =  0.94 and 0, respectively. For         , 

bG can be 

approximated as 2(1 )bG r r   .  

Eqs. (18) and (19) are used to predict the cross-shore variation of  ̅ and Us for assumed qo.  It is 

necessary to estimate the wet probability Pw empirically. To simplify the integration of Eq. (19), the 

following formula is adopted: 
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where   
̅̅ ̅ and    = mean water depth and volume flux, respectively, at the location of x = x1 where Pw = 

1; n = empirical parameter for Pw ; and A and A1 = dimensionless variables related to q and q1, 

respectively. The transition from the wet (Pw = 1 always) zone to the wet and dry (Pw < 1) zone may be 

taken at  x1 = xSWL where  xSWL is the cross-shore location of the still water shoreline of an emerged 

crest as shown in Fig. 1. Eq. (23) is assumed to be valid on the upward slope and horizontal crest in the 

region of         where    is the highest and most landward location of the structure as shown in 

Fig. 1. Eq (23) reduces to that used by Kobayashi et al. (2010) for an impermeable structure with q = q1 

= qo. 

Integration of Eq. (19) for Pw given by Eq. (23) starting from  ̅   ̅  at       yields  
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where  Bn = B(2  n)/(n1); and zb(x) = bottom elevation at the cross-shore location x. The mean water 

depth  ̅ at given x is computed by solving Eq. (24) iteratively. The empirical parameter n is taken to be 

in the range of 1 < n < 2  so that  Bn > 0. The formula for n calibrated by Kobayashi et al. (2010) using 

207 tests for wave overtopping of smooth impermeable structures is expressed as 

 
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where 1.01 1.99n   and  32

1/o oA q Bgh .  

On the downward slope in the region of x > xc, the wet probability Pw is assumed to be given by 
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where Pc and qc are the computed wet probability Pw and volume flux q at x = xc. For the case where 

the landward slope is impermeable, q = qc = qo and then Pw is equal to Pc.  

Substituting Eq. (25) into Eq. (19) and integrating the resulting equation from xc to x, the mean 

depth  ̅    is expressed as  
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where   
̅̅ ̅ is the computed mean depth at x = xc . 

The wave overtopping rate qo is predicted by imposing Us = 0 in Eq. (18) at the crest location xc 
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The wave overtopping probability Po may be related to the wet probability Pc at x = xc where both Po 

and Pc are in the range of 0.0 – 1.0. The empirical relation of  
0.8

tanh 5o cP P   
was fitted by 

Kobayashi et al. (2010) using 207 tests for wave overtopping of smooth impermeable structures. 

In order to evaluate the numerical model for the permeable wet and dry zone, the computed results 

have been compared with 52 experimental tests of wave overtopping on permeable structures including 

12 seepage tests, 10 overtopping and seepage tests (Kobayashi and de los Santos 2007) and 12 

overtopping tests (Kobayashi and Raichle 1994). The comparison was also made with D' test series of 

18 tests by van Gent (2002). The seaward slope of the structures was in the range of 1/5 to 1/2. The 
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comparisons showed the model capability of predicting the wave hydrodynamics parameters within a 

factor of two (Kobayashi et al. 2010). 

3. ARMOR LAYER EVOLUTION MODEL 

The sediment transport model for the wet zone developed by Kobayashi et al. (2009) is modified to 

predict the movement of stone armor units on a coastal structure. The probability 
bP  of stone 

movement under the Gaussian velocity U  in the wet zone is estimated assuming that the stone 

movement occurs when the absolute value of the instantaneous velocity U exceeds the critical velocity 

cbU  estimated as 

                                                   
0.5

501cb c nU N g s D                                                           (28) 

where s  and 
50nD = specific gravity and nominal diameter of the stone; and 

cN  = empirical parameter.  

If the wave height 
cH  corresponding to 

bcU  is given by 2 /c bcH U g , Eq. (28)  yields  

                                                     50/ 1c c nN H s D                                                             (29) 

where 
cN  may be regarded as the critical stability number for the stone which is of the order of unity 

(Kobayashi et al. 2003).  Kobayashi et al. (2009) used the critical Shields parameter 0.05c   for the 

initiation of sand movement. The two parameters are related by 2 /c c bN f   and the equation of the 

probability bP  given by Kobayashi et al. (2009) is applicable using 0.5c b cf N  .  Eq. (29) is adopted 

here and 
cN  is calibrated as 

cN  = 0.7 using the damage progression tests of a stone structure with s  = 

2.66 and 
50nD  = 3.64 cm conducted by Melby and Kobayashi (1998). The probability of stone 

suspension is estimated in the same way as in Kobayashi et al. (2009) where the stone fall velocity fw  

is estimated for a sphere (e.g., Jiménez and Madsen 2003) as 

                                                 
0.5

501.8 1f nw g s D                                                              (30) 

For the stone with s  = 2.66 and 
50nD  = 3.64 cm, fw  = 1.4 m/s and the computed probability of 

suspension of this stone is essentially zero. The stone armor units are assumed to move like bed load 

particles in the following. 

The probability 
bP  of stone movement in the wet and dry zone is obtained for the probability 

distribution of U  based on Eqs. (12) and (15). The probability 
bP  of stone movement is assumed to be 

the same as the probability of 
cbU U  with 

cbU  given by Eq. (28) and is estimated as 

             forb w s cbP P U U             (31) 

              
2

2
exp for

w cb s

b w s cb

P U U
P P U U

gh

 
   

  

          (32) 

               
2 2

2 2
1 exp exp forw cb s w cb s

b w s cb

P U U P U U
P P U U

gh gh 

      
          

        

               (33) 

where the upper limit of  
bP  is the wet probability 

wP  because no stone movement occurs during the 

dry duration. 

The time-averaged volumetric rate bq  of stone transport is estimated using the formula for bed 

load in the wet zone proposed by Kobayashi et al. (2009) 
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with 

                                 
 tan / tan for tan 0s b bG S S                            (35) 

                                    tan 2 / tan for 0 tans b b bG S S S                               (36) 
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where b  =  bed load parameter; 
sG  =  function of the bottom slope /b bS z x   ; 

rB = reduction factor 

due to limited stone availability; m = empirical parameter calibrated later; 
U  = velocity standard 

deviation representing the wave action on the stone; and tan  = limiting slope of the stone. The rate 

bq  becomes negative (offshore) on the steep slope of  tan / 2bS  and 0sG  . Use is simply made of    

b  =  0.002 and tan  = 0.63 adopted by Kobayashi et al. (2009). The reduction factor 
rB  is added here 

to account for the thickness  b pz z  of the stone layer where 1rB   if    50b p nz z D   and 0rB   in 

the zone of 
b pz z  and no stone. The rate bq  of stone transport in the wet and dry zone is also 

estimated using Eq. (34) where the parameter b  is chosen so that the values of 
bq  computed for the 

two different zones are the same at the still water shoreline located at 
SWLx x . The computed cross-

shore variations of 
bq  in the two zones are averaged in the overlapping zone of 

SWL rx x x   for the 

smooth transition between the two zones. 

Finally, the temporal change of the bottom elevation bz  is computed using the conservation 

equation of stone volume per unit width 

                                                      1 0b b
p

z q
n

t x

 
  

 
                                                              (37) 

where t = slow time for the profile change; and 
pn = stone porosity which is assumed to remain 

constant. Eq. (37) is solved numerically to obtain the bottom elevation bz
 
at the next time level 

(Kobayashi et al. 2009). The condition of / 0bq x    is imposed at the landward end of the 

computation domain. This computation procedure is repeated starting from the initial bottom profile 

until the end of a profile evolution test. The computation time is of the order of 10
-3

 of the test duration. 

4. COMPARISON WITH DAMAGE PROGRESSION DATA 

 To evaluate the damage progression model performance, the comparison is made with the damage 

progression tests for a rubble mound structure by Melby and Kobayashi (1998). Their stone structure 

tests include three tests A', B' and C' with an identical structure profile and stone but different water 

levels, wave conditions and durations. The tests were designed to examine the long-term progression of 

the armor layer damage of a stone structure. 

4.1. Experiment by Melby and Kobayashi 

 The experiment was conducted in a flume of 61.1 m long, 1.52 m wide, and 2.0 m high. Fig. 2 

shows the structure cross section. The beach slope was 1/20. The height of the rubble mound structure 

was 30.5 cm above the toe of the seaward slope of 1/2. The crest width was 11 cm. The armor stone 

was placed in a traditional two-layer thickness. The armor stone was characterized by 
50nD   3.64 cm, 

s = 2.66 and 
pn  0.4 where the maximum seepage velocity is 

mw  = 8.7 cm/s estimated using Eq. 

(11). The thickness of the armor layer was 7.3 cm. The underlayer was 2.9-cm thick and consisted of 

stone in the size range of 1.27 – 1.59 cm. The size of the core stone ranged from 0.47 to 0.67 cm. 

 

 

 

Fig. 2. Experimental setup for damage progression tests 
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 The still water depth below z = 0 was 11.9 cm at the toe of the slope of 1/2. Table 1 summarizes 

the still water level S and wave conditions measured at the boundary x = 0 in Fig. 1. The time t  is the 

damage progression time starting from zero damage at t  = 0. The RMS wave height 
rmsH  was 

increased during constant  S. The profiles were measured along 16 or 32 cross-shore lines every 0.5 h. 

The average profiles are used here.  The tests durations were  
et  =  28.5, 8.5 and 9.0 h for tests A', B' 

and C', respectively.  

 

Table 1.  Still Water Level and Wave Conditions at 0x   

for Three Damage Progression Tests 

Test t (h) S (cm) Tp (s) Hrms (cm) 

A' 
0.0 – 10.5 0.0 2.48 6.9 – 10.0 

10.5 – 28.5 3.9 2.59 7.4 – 11.2 

B' 
0.0 – 4.5 0.0 2.48 6.9 – 10.0 

4.5 – 8.5 3.9 2.59 9.6 – 11.2 

C' 
0.0 – 5.0 3.9 2.59 7.4 – 11.2 

5.0 – 9.0 0.0 2.48 8.8 – 10.0 

 

 The damage progression model is calibrated because of the empirical parameters introduced in the 

model. In Eq. (34), the reduction factor 
rB is introduced with the empirical parameter m . The model is 

relatively insensitive to the parameter m in the range of 0.5-2. The computed profiles for the different 

values of m  were very similar. Therefore, m  is taken as m  = 1 for simplicity (Farhadzadeh et al. 

2009). 

 As discussed earlier, the main empirical parameter in the damage progression model is the critical 

stability number 
cN . To examine the sensitivity of the model to 

cN , computation is made for the three 

tests using different 
cN =  0.6 and 0.7 .Eq. (28) states that the critical velocity 

cbU for the stone 

movement increases with the increase of 
cN . Therefore, more damage is expected with 

cN = 0.6 than 

with 
cN = 0.7. The best agreement with the measured damage progression was achieved for 

cN = 0.6. 

However, the damage profiles for tests A', B' and C' were predicted better for 
cN = 0.7 (Farhadzadeh et 

al. 2009). In the following 
cN = 0.7 is used.  

4.2. Comparison with Damage Tests 

 The calibrated damage model is compared with the experiment by Melby and Kobayashi (1998). 

Computation was made by taking pz  at the lower boundary of the underlayer as well as the armor 

layer in Fig. 2 to examine the effect of the permeable layer thickness. The difference of the computed 

results is found to be much smaller than the difference between the measured and computed results 

(Kobayashi et al. 2010). Therefore, the assumed impermeable boundary of 
pz z is taken at the lower 

boundary of the armor layer. The measured and computed profiles  bz x  at the different time levels 

(see Table 1) are compared in Fig. 3 to 5 for tests A', B' and C', respectively. The numerical model 

underpredicts the eroded area as well as the deposited area below SWL. However, the deposited area is 

predicted better as the damage progresses in test A'. 

 The temporal variations of the measured and computed eroded areas 
eA  using damage 

eS
 
defined 

as 2

50/e e nS A D , computed overtopping rate 
oq , input root-mean-square wave height 

rmsH and input 

still water level S , for test A', B' and C' are plotted in Fig. 6 to 8. The initial upper and lower 

boundaries of the armor layer are shown in thin light solid and dash lines. The numerical model 

predicts the damage progression well partly because the critical stability number 
cN  introduced in Eq. 

(28) is calibrated to be 
cN  = 0.7 for these damage progression tests. The computed wave overtopping 

rates 
oq  suggest that even though the wave overtopping rate is affected by the damage progression, the 

still water level and wave height at 0x   are more influential. However, the wave overtopping rate was 

not measured in this experiment.  
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Fig. 3. Measured and computed damage profile for test A' at t = 10.5 h, 17.5 h and 28.5 h 
 
 

 
Fig. 4. Measured and computed damage profile for test B' at t = 4.5 h and 8.5 h 
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Fig. 5. Measured and computed damage profile for test C' at t = 5 h and 9 h 
 
 

 
Fig.6. Temporal variations of damage, overtopping rate, root-mean-square wave height and still water 
level for test A' 
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Fig.7. Temporal variations of damage, overtopping rate, root-mean-square wave height and still water 
level for test B' 

 

 
Fig.8. Temporal variations of damage, overtopping rate, root-mean-square wave height and still water 
level for test C' 
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5. CONCLUSIONS  

A probabilistic hydrodynamic model for the wet and dry zone on a permeable structure is 

developed and connected with the model for the wet zone developed by Kobayashi et al. (2007) which 

is modified to account for onshore current induced by wave overtopping. The new model for the 

permeable wet and dry zone is based on the time-averaged continuity and momentum equations for 

nonlinear shallow-water waves coupled with the assumptions of the exponential probability distribution 

of the water depth h  given by Eq. (12) and the relation given by Eq. (15) between the horizontal 

velocity U  and h. This model predicts the cross-shore variations of the mean and standard deviation of 

h  and U  and the wet probability Pw within a factor of about 2. Nevertheless, data will be needed to 

evaluate the accuracy of Eqs. (12) and (15) directly. 

Damage progression of a rubble mount structure is predicted by modifying the bed load formula 

proposed by Kobayashi et al. (2009) with input from the hydrodynamic model. The probability 
bP of 

stone movement is estimated using the critical velocity expressed by Eq. (28) which may be improved 

with the measurement of the individual stone movement and corresponding fluid velocity. The damage 

progression model is compared with three tests that lasted up to 28.5 hours. The model predicts the 

eroded and deposited areas of the damaged armor layer fairly well. The temporal variation of the 

eroded area is predicted well partly because Eq. (28) is calibrated for these three tests. The damage 

progression model will need to be verified using additional damage progression tests for different stone 

units and other armor units. 
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