

ICCE 2010

Objectives

- Development of a 3D flow solver based on the Euler equations using a Riemann-based finite volume method and Cartesian cut cell meshes for simulating water impact problems involving arbitrarily complex moving rigid bodies.

Methods

- Incompressible Navier-Stokes solver - Based on an artificial compressibility method.
- Surface-capturing method that treats the free surface as a contact discontinuity in the density field so no special procedures are required to track the free surface.
- Fully two phase approach which solves in both the air and water fluid regions.
- Cartesian cut cell Method
- flexibility for dealing with complex moving geometries
- no requirement to re-mesh globally: only requires updates locally at cells on the background Cartesian mesh that are actually cut by the moving boundary contour.

Results

1. Oscillating cone validation

- Vertical position of a cone $d(t)$ follows the form of a

Gaussian wave packet:

$$
d(t)=A \sum_{n=1}^{N} Z\left(\omega_{n}\right) \cos \left[\omega_{n}\left(t-t_{0}\right)-\frac{h \pi}{2}\right] \Delta \omega_{n}
$$

- Experiments conducted by K. Drake et al.(2009).
- Test case: $A=50 \mathrm{~mm}, \mathrm{~m}=9$ and cone dead-rise angle of 450.
- Tank: $2.0 \mathrm{~m} \times 1.6 \mathrm{~m}$, the water depth: $\mathrm{h}=1.02 \mathrm{~m}$ and the initial draught of the cone is $z=0.148 \mathrm{~m}$.
- Dimensions: $a=0.228 \mathrm{~m}, \mathrm{~d}=0.2281 \mathrm{~m}, \mathrm{~b}=0.05 \mathrm{~m}$
- CPU time on coarse mesh ($\mathrm{dx}=\mathrm{dy}=0.02 \mathrm{~m}$) 15 hours
- CPU time on fine mesh ($\mathrm{d} x=\mathrm{dy}=0.01 \mathrm{~m}$) 41 hours

3. Water entry of various rigid 3D bodies

Conclusion

- Validations included forced oscillation of a cone and water entry of a 3D rigid wedge.
- AMAZON-SC3D has been successfully implemented for various slamming cases involving the Manchester Bobber; cone; sphere and wedge.

References

1. Drake,K., Eatock Taylor, R., Taylor, P. and Bai, W. (2009). "On the hydrodynamics of bobbing cones." accepted.
2. Tveitnes T., fairlie-Clarke A.C., Varyani K. (2008). "An experimental investigation into the constant velocity water entry of wedge-shape sections, " J. Ocean Eng. 35: 14631478.
3. Hu Z.Z., Causon D.M., Mingham C.G., Qian L. (2009). "Numerical wave tank study of a wave energy converter in heave." Proceedlings 19th ISOPE conference, Osaka, Japan.
