
Some of empirical formulas presented the breaking wave height in terms of deepwater
wave condition, such as in sunamura (1983) and in Rattanapiti-kon and shibayama(2000).
Base on the results depicted in Fig.4 a-b, it showed that our theoretical results and the
experimental data of breaking wave height are more consistent than other’s empirical

T h e f l u i d m o t i o n i n t h e
Lagrangian represen ta t ion is
described by tracing an individual
fluid particle. For two-dimensional
flow, a fluid particle is distinguished
by the horizontal and vertical
parameters ( , ) known as
Lagrangian labels. Then fluid motion
is described by a set of trajectories

In this poster, a new third-order Lagrangian
asymptotic solution describing nonlinear water wave
propagation on the surface of a uniform sloping
bottom is presented. The model is formulated in the
Lagrangian variables and we use a two parameter
perturbation method to develop a new mathematical
derivation. The analytical solution in Lagrangian
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The limit wave steepness for breaking waves on a uniform water depth was first present in
Miche(1951) based on the theoretical analysis. Goda(2004) expressed the breaking criterion
graphically according to many experimental works and presented an approximate expression
for the curves. This empirical formula has been applied practically and widely in design of
most maritime structures. Being united with Eq.(1) by Eq.(2) can determine the breaking point.
So our theoretical solution can discuss a succession of breaking indices. Compare our solution
from Fig.3a-b with empirical formula of Goda(2004), we found that when the slope is 1/10,
result of Goda(2004) and our theoretical results are consistent, and when slope is 1/3, the
consistency of our results between theoretical solution and experimental data is better than the
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Fig. 2 Comparison of the breaking wave height on three bottom slope.
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The third-order Lagrangian solutions which should be referred to Chen et al.(2006, 2009)
can be solved as follow:

The breaking wave Indices obtain from the present theory shows similar tendency to the
experimental data and the theoretical curves and the experimental data are more consistent
than other’s empirical formula when the bottom slope steep. While the purpose of the present
study is to establish a rational mathematical model, which satisfies the bottom boundary
condition, its accuracy needs further improvement to include the effects of higher order wave
steepness on a sloping bottom and the effect of bottom friction in shallow water.

CONCLUSIONS

form satisfies state of the normal pressure at the free surface. The condition of the
conservation of mass flux is examined in detail for the first time. The two important
properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean
level, are included in the third-order solution. The solution can also be used to estimate
the mean return current for waves progressing over the sloping bottom. The Lagrangian
solution untangle the description of the features of wave shoaling in the direction of wave
propagation from deep to shallow water, as well as the process of successive deformation
of a wave profile and water particle trajectories leading to wave breaking. So the
analytical solution could be used to determine the breaker characteristics.

and , where x and y are in Cartesian coordinates. The dependent
variables x and y indicate the position of any particle at time t and are function of the
independent variables , and t. In a system of Lagrangian description, the governing
equations and boundary conditions for two-dimensional irrotational free-surface flow are

summarized as follow:
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Fig. 1 Definition sketch for surface-wave propagation on a uniformly
sloping bottom.

Both linear (up to the order of ) and nonlinear solution (up to the order of ) are also
implemented for comparison and the results are shown in Fig. 2. In general, the nonlinear
wave profiles are higher than the linear solution for any wave steepness and bottom slope.
Moreover, the breaking point predicted by the nonlinear solution occurs earlier than that by
the linear solution. We remark here that in the comparisons made above, the nonlinear wave
profiles prior to breaking point differ from the linear wave profiles in three ways:

2

1. Breaking takes place earlier in a deeper depth.
2. The wave height at the breaking point is much higher.
3. After breaking point, the tendency for the wave profile to plunge onto the sea bed is reduced.
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Fig. 2 Successive wave

profiles prior to breaking
plotted by linear.
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Because of the change of water depth, the wave shoals and is refracted in the propagation
process from deep to shallow water. The celerity is reduced; hence, the particle velocity
of the wave crest is faster than the celerity and the wave breaks. In order to describe the
breaking wave mechanism, the determine of wave breaking is applied and the breaking
criterion is U/C=1 where U is celerity and C is the horizontal velocity of particle at the
wave crest. According to the determine of wave breaking two function could be obtained
as follow :

empirical formula of Goda(2004).
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Fig. 3 Comparison of the breaking criteria on bottom slope.

formula.


