
 

1 

NUMERICAL MODELING OF BREAKING SOLITARY WAVE RUN UP IN SURF ZONE 

USING INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODINAMICS (ISPH) 

Kourosh Hejazi
1
, AmirReza Ghavami

2
 and Abolfazl Aslani

3
 

This paper presents a numerical model for simulating wave run-up on rough sloping surfaces. Incompressible 

smoothed particle hydrodynamics (ISPH) has been utilized, which is capable of efficient tracking of free surface 

deformation in a Lagrangian coordinate system. Many of the existing models have focused on inviscid wave run-up 

on a smooth surface, but few numerical models and especially experimental studies have investigated the effect of 

beach roughness on the run up. In the present study two methods have been deployed to study the effect of roughness 

on wave run up. In the first method, the mass unit force, which is a coefficient of the fluid viscosity, and is dependent 

on the roughness of the solid boundary, has been used. In the second method, mass unit force obtained from the wall 

functions was utilized to enforce the friction on the particles near the boundaries. The comparisons of the numerical 

simulations with the analytical solutions and experimental data confirmed the capability of the model in simulating 

wave propagation and wave breaking. It was also concluded that the effect of roughness on wave run up depends on 

both the roughness itself and the beach slope. The results also indicated small roughness effect on waves running up 

over steep slopes.  
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1. INTRODUCTION  

The problem of determining the run-up of solitary waves over beaches usually arises in the study of 

the coastal effects of tsunamis. Tsunamis are long water waves of small steepness. As is well known, 

tsunamis are caused by sudden displacements of sea water due to shallow submarine earthquakes whose 

epicenter is less than 40km below the seabed, landslides, submarine slides and volcanic activity. 

Significant amounts of literature have been published that analyze long wave shoaling and run-up 

on slopes using the nonlinear shallow water equations (NSWE). The NSWE describe a thin layer of 

fluid of constant density in hydrostatic balance, bounded from below by bottom topography and from 

above by a free surface. In wave run-up modeling, one of difficulties in breaking wave simulation is the 

free surface tracking. The VOF method is one of the most flexible and robust approaches in this regard.  

Recently, numerical methods which do not use any grid structures have been developed, such as 

Lagrangian or particle methods. The smoothed particle hydrodynamics (SPH) and moving particle 

semi-implicit (MPS) methods are two of the more robust approaches. In SPH, the state of a system is 

represented by a set of particles, which possess material properties and interact with each other within a 

range controlled by a kernel function. In the early simulations of fluid flows by the weakly compressible 

SPH, incompressibility was realized through an equation of state so that the fluid was assumed slightly 

compressible. In this case, a large sound speed has to be introduced, which could easily cause problems 

of sound wave reflections at the solid boundaries. In ISPH and MPS methods, the pressure is not a 

hydrodynamic variable to be obtained from the equation of state, but is obtained by way of solving a 

pressure Poisson equation derived from a semi-implicit algorithm.  

Tsunamis and periodic wave run-up are complex phenomena. In spite of excellent studies carried 

out in this area, there are still many questions remaining to be solved. One area that needs further 

research is the effect of terrain roughness on tsunami run-up. Many of the existing models have focused 

on inviscid wave run-up on smooth surfaces, but there have been a few numerical and experimental 

studies which are carried out to investigate how beach roughness affects the run up. This paper presents 

an incompressible two-dimensional SPH model to simulate the wave run-up on smooth and rough 

slopes. Two methods have been implemented in the present model to account for the friction in the 

ISPH model. In the first method the friction force is taken equal to a constant coefficient of viscosity 

term, and in the second method the shear velocity is calculated from a wall function. 

Early efforts for estimating wave overtopping focused on wave run-up based on numerous flume 

and basin tests. For instance, in the Netherlands, the height used for coastal embankments was the 

extreme water level with an allowance for the so-called 2% run up level (Vandermeer 2002). 
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Vandermeer and Stam (1992) studied irregular wave run up. Their laboratory studies yielded 

formulations to assess various run up levels as a function of the surf similarity or breaker parameter. 

2. GOVERNING EQUATIONS 

The governing equations employed in the present model are the conservation of mass and 

momentum equations, which are written in the Lagrangian form as follows: 
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where V is the velocity vector, p is pressure, t is time, 𝜌 is the density of water, g is gravitational 

acceleration, and µ is the dynamic viscosity of water. 

The momentum and continuity equations in the form of SPH written for a particle i are presented as 

follows (Lo and Shao 2002): 
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In the above equations i is the reference particle and j is its neighboring particle. im , i , i , iP and iV  

are mass, density, viscosity, pressure and velocity of particle i, respectively. ijr is the distance between 

particles i and j, ijW  is the kernel function, and η=0.1h, where h is the smoothing length. 

3. NUMERICAL PROCEDURE 

The fractional step scheme utilized for the ISPH method consists of two steps. In the first step the 

velocity field is computed using momentum equation in the absence of the pressure gradient term. 

Incompressibility is not satisfied in this step and the fluid density ( * ) is calculated based on the 

temporary positions of the particles. An intermediate particle velocity and position are obtained as 

follows (Lo and Shao 2002): 
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Here ( tV ) and ( tr ) are particle velocity and position at time t respectively, ( *V ) and ( *r ) are 

intermediate particle velocity and position respectively and ( *V ) is the change of particle velocity 

during the first step and ∆t is the time increment. 

In the second correction step, the pressure term is used to enforce incompressibility by continuity 

equation where a Poisson equation is solved, and the new velocity values and positions of the particles 

are then computed. 
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where ( **V ) is the change of the particle velocity during the correction step.  

The incompressibility is enforced through the following equation: 
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where *  is the intermediate particle density. By combining equations 8 and 9: 
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Laplacian will lead to the second derivative of the kernel function that is very sensitive to particle 

disorder, and can cause pressure instability. Lo and Shao (2002) introduced a formulation for a stable 

Laplacian as follows: 
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where jiij PPP   and jiij rrr  . By combining equations 10 and 11 the Poisson equation, which is a 

linear system of equations, is obtained as follows: 
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To solve the Poisson equation, a combination of direct and iterative methods has been utilized. In 

the first time-step, the pressures are computed by the direct method. This pressure is then used for the 

next time-step as an initial value for the iterative procedure. The solution continues by using the past 

time-step pressure for each time-step as an initial value for the iteration process.  Since a limited 

number of particles around the reference particle contribute to the Poisson equation, the sparse property 

of the matrix of pressure coefficients has been used to decrease the computational time. Poisson 

equation of pressure can also be described as follows (Ataie-Ashtiani and et al. 2008): 
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The Poisson equation (Eq. 14) is a modified Poisson equation of pressure in ISPH method which uses 

free divergence velocity constraint instead of invariant density. ( **V ) is computed by using equation 

(15) as follows: 
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Finally particle velocity and position at time (t+∆t) are computed by using equations 16 and 17 as 

follows: 
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4. WALL BOUNDARY AND FREE SURFACE 

A major challenge in SPH method is the solid boundary simulation. In this study, a line of particles 

are used to represent the boundary particles, and two lines of ghost particles are considered outside the 

solid boundary. The pressure of the ghost particles is set to that of corresponding wall particles in the 

normal direction of the solid wall (Ataie-Ashtiani and et al. 2008). 

At the water surface the particles are considered as free surface particles, where they satisfy the 

following condition (Lo and Shao 2002): 
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in which β = constant (0.97). A condition of the pressure P = 0 is given to the water-surface particles. 

Since there is no particle in the outer region of free surface, the particle density decreases on this 

boundary, which leads to spurious pressure gradients. To overcome this problem, it is assumed that s is 

a surface particle with zero pressure and i is an inner fluid particle with pressure iP . In order to 

calculate the pressure gradients between the two particles, a mirror particle (m) with pressure iP   is 

placed in the direct reflection position of inner particle i through the surface particle s. The gradient of 

the pressure between the surface particles, mirror particle (m) and inner particle (i) is expressed as 

follows (Lo and Shao 2002): 
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Combining equations 19-22 gives: 
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5. NUMERICAL CONVERGENCE 

Because the individual fluid particles are discrete points and cannot deform as the real fluid does, 

the number of particles employed in the computations must be sufficiently large to lead to numerical 

convergence. The time step is controlled in the computations to satisfy the following condition (Lo and 

Shao 2002): 
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where maxv  is the maximum particle velocity in the computations and 0l  is the initial particle spacing. 

The factor 0.1 ensures that the particle can move only a fraction (in this case 0.1) of the particle spacing 

per time step. In addition, the constraint of the time step due to viscous diffusion must also be satisfied 

by equation (25) as follows (Lo and Shao 2002): 
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where α is a coefficient depending on the choice of the kernel type and particle arrangement. α is 

usually in the order of 0.1, which is determined from SPH numerical trials. 

6. APPLICATION OF SURFACE ROUGHNESS IN ISPH 

6.1. The first method 

No slip condition sets the relative speed of fluid equal to zero on the boundary. In other words, 

fluid undergoes friction from the underlying boundary. In this paper an approach similar to that of 

Muller et al. (2004) has been applied. By using the viscosity equation and considering the boundary 

particles (Muller et al. 2004; Krištof et al. 2009): 
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where bf is the boundary friction force, k is a constant and bn  is the number of the boundary particles 

in the support domain, which are represented with red particles in figure 1. 

Boundary friction force has been considered as a diffusive term in equation (26), where the variable 

k applies the boundary roughness effect. For the larger number of the boundary particles in the support 

domain, more frictional force is applied to the fluid particles. The number of the particles inside the 

support domain reduces away from the boundary. The boundary friction applied to the fluid particle has 

a direct correlation with its distance from the boundary. Due to the instability caused by the second 

derivatives, equation 26 is discretized as follows:  
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The force per unit of mass is expressed as follows: 
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                                                  Figure 1. Boundary particles in the support domain 

 
6.2. The second method 

Surface roughness typically leads to an increase in turbulence production near the wall. This can 

result in significant increase in the wall shear stress. For an accurate prediction of near wall flows, the 

proper modeling of surface roughness is essential for a good agreement with experimental data. Wall 

roughness increases the wall shear stress and breaks up the viscous sub layer in turbulent flows. The 

wall boundary conditions are implemented by the following equations (Versteeg and Malalasekera 

2007): 
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U
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where y is the distance of near wall particle to the solid surface, y is the dimensionless distance from 

wall and u  is the dimensionless near wall velocity. A near wall particle is taken to be laminar if y ≤ 

max (11.63, h ). The wall shear stress is assumed to be entirely viscous in origin. If y ≥ max 

(11.63, h ), the flow is turbulent and the wall function approach is used. h  is the dimensionless 

roughness height, U is the tangential velocity on the wall and u is the friction velocity.  
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If near wall particle is taken to be in the linear zone, then: 

                                                    yu                                                     (32) 

If near wall particle is taken to be in turbulent area then: 

                                               BB
k

u y 
 ln

1
                                         (33) 

where B = 5.2. The shift ∆B is a function of the dimensionless roughness height. Figure 2 shows the 

downward shift in the logarithmic velocity profile. 

 

                               Figure 2. Downward shift of the logarithmic velocity profile 
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For sand grain roughness, h is the equivalent roughness height, and the downward shift can be 

expressed as follows (Zhang 2009): 
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Replacing equations 31 and 34 in equation 32 leads to (Zhang 2009): 

                                      
)5.01(

ln
1

ln
1 









 huyu

k
B

ku

U 

                                  (35) 

By solving Equation 35, u  is obtained and w  and mf  can then be calculated as follows:                                              
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where a is a constant coefficient for calibration, w  is the shear stress and mf  is force per unit of mass. 

7. HYDRODYNAMIC TESTS    

7.1. Solitary wave propagation 

Solitary wave propagation on a constant water depth is simulated in order to test the accuracy of the 

numerical scheme for the ISPH model. The analytical solution for the wave profile can be derived from 

the Boussinesq equation as follows (Lo and Shao 2002): 
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where η is the water surface elevation, H the wave amplitude, h the water depth and )( hHgc   the 

solitary wave celerity. The horizontal velocity under the wave profile is given by: 

                                                        
h

g
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A solitary wave with a wave height of H = 0.04cm is considered. The water depth h is 0.18m and 

the initial particle spacing 0l  is 1cm. 11245 particles are involved in the computations. 

   
(a)                                                                            (b) 

   
                                        (c)                                                                          (d) 

   
                                       (e)                                                                          (f) 

Figure 3. Comparison between analytical solution and numerical simulations for solitary wave propagation: 

a) t = 0, b) t = 0.1s, c) t = 1s, d) t = 1.3s, e) t = 1.5s, f) t = 1.8s. 
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Figure 3 shows the comparisons of simulation of a solitary wave with analytical solution. The 

results show that the wave maintains its form during the wave propagation, and the agreements with the 

analytical solution are convincing. 

  
7.2. Regular wave propagation 

The incompressible SPH method has also been simulated for regular wave propagation. The 

analytical solution for the wave profile can be derived from the equation (40) as follows: 
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where k is the wave number, L is the wave length, w is the wave frequency and T  is the wave period. 

The kinematic condition must be satisfied on the wave maker. If S is the horizontal displacement of a 

piston-type wave maker, then the wave maker position may be described as follows (Dean and 

Dalrymple 1991): 
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The range of wave maker motion (S) can be computed from the following equation (Dean and 

Dalrymple 1991): 
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To absorb the wave reflection from the wall at the end of the flume, an exponential damping zone is 

placed over a distance of at least a wave length. In the damping zone, the velocity of fluid particles will 

be damped according to the formulation as follows (Xu 2010): 

                                                      )(0 xfVV                                                   (43) 

where V is the fluid velocity, and: 
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α is a coefficient equal to 2, 0δx  is the damping zone length which is equal to 1.5 in the present model, 

and 0x is the starting point of damping zone. 

    
(a)                                                     (b) 

    
                                         (c)                                                                         (d) 
Figure 4. Comparison between analytical and numerical simulations for regular wave propagation: a) t = 

3.5s, b) t = 4s, c) t = 4.5s, d) t = 5s. 

  

A regular wave with the wave height of H = 0.04cm is considered. The water depth h is 0.24m, the 

initial particle spacing 0l  is 1cm, the wave period is 0.9s and the wave length is 1.108m. 13917 

particles are involved in the computations. Figure 4 shows the regular wave propagation, and the 

performance of the wave absorber and damping zone. The numerical simulations are in good agreement 

with the analytical solution. 
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8. WAVE BREAKING 

The laboratory breaking solitary wave experiments provided appealing tests for demonstrating the 

capability of the ISPH model to simulate a breaking solitary wave run up on a mild, 1:20 (Synolakis 

1987), and a 1:15 slope (Grilli et al. 1997). 

 
8.1. Comparison with the laboratory measurements on a slope of 1:20 

In the experiments the still water depth was d = 21.168cm, the slope of the beach 1:20 and the 

incident wave height H=5.88cm (Synolakis 1987). The initial particle spacing was considered to be 

0l =1.176cm, and 5457 particles were used in the simulations. 

 

   
(a)                                                                        (b) 

 
                                     (c) 

Figure 5. Comparisons between the simulated results and experimental data for water surface profile of a 

solitary wave breaking on a 1:20 slope at a) t = 1.7s, b) t = 2.4s, c) t = 3.7s. 

 

In figure 5, the numerical model simulations are compared with the experimental measurements of 

Synolakis (1987). In figure 5-a wave height increases, and figure 5-b shows the final stage of the 

solitary wave shoaling. The wave form becomes highly asymmetric due to decrease of water depth, and 

figure 5-c shows the wave run up. In figure 5-b, the amplitude increases about 2.22cm higher than the 

incident wave height. Further steeping of the wave front causes the wave to start breaking.  

 
8.2. Comparison with the laboratory measurements on a slope of 1:15 

In this experiment the still water depth was d = 30.36 cm, the slope of the beach was 1:15 and the 

incident wave height was H = 13.8cm (Grilli et al. 1997). The initial particle spacing was considered to 

be 0l =1.38cm and 9948 particles were used in the simulations.  

 

   
(a)                                                                    (b) 

   
                                         (c)                                                                  (d) 

Figure 6.  Comparisons of the computed and measured surface profile of solitary wave breaking on a 1:15 

slope at a) t = 1.95s, b) t = 2.05s, c) t = 2.1s, d) t = 2.15s. 
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Figures 6-a to 6-d show the comparisons of the numerical simulations of a solitary wave breaking 

on a 1:15 slope with the experimental measurements. In figure 6-b, process of wave shoaling has been 

finished. Wave front takes a vertical form and breaking process starts. In figures 6-c and 6-d the wave 

breaking is completed, and in figure 6-d, the differences between the numerical and experimental values 

are apparent.  

9. NUMERICAL MODELING OF WAVE RUN-UP ON A ROUGH SURFACE 

In the present study, simulation of wave run up is carried out by two different methods for 

investigating the influence of boundary roughness. The run-up simulations were conducted for both 

smooth and rough (n = 0.02, n = 0.024, n = 0.033; n is the Manning coefficient) beaches with two 

different slopes (β), namely, β = 5 and β = 10 degrees. Numerically simulated values were compared 

with the laboratory results of Teng and Feng (2000). The water depth ranged from 0.127m to 0.203m. 

In the first method, fk  in equation (28) is the boundary friction constant and is related to the 

surface roughness. The numerical results for wave run-up on both smooth and rough surfaces with β = 5 

degrees are presented in figure 7. The values of fk are calibrated for a specified value of a/h, and then 

the run up is computed for the other values of a/h using the computed constant roughness.  

In figure 7, a is the wave amplitude, h is the water depth and R is wave run-up. The values of fk  

are calibrated for different Manning coefficients as presented in Table 1. The Manning coefficient for a 

smooth surface is 0.009. 

 

Table 1. Values of fk  for different 

Manning coefficients 

Manning  
coefficient 

fk  

0.009 0 

0.02 0.025 

0.24 0.055 

0.033 0.128 

 

In the second method, the a constant in equation 37 is calibrated for n = 0.02. a is equal to 0.00316 

and the numerically simulated results for wave run-up for both smooth and rough slopes for β = 10 

degrees are presented in figure 8. 

    
(a)                                                                           (b) 

    
                                      (c)                                                                            (d) 

Figure 7. Comparison of numerical results and experimental data of run-up using the first and second 

methods on a surface with β = 5 degrees: a) smooth surface, b) surface with n = 0.02, c) surface with n = 

0.024, d) surface with n = 0.033. 
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(a)                                                                            (b) 

           
                                            (c)                                                                            (d) 
Figure 8. Comparison of numerical results and experimental data for wave run up using the first and second 

methods on a surface with β = 10 degrees: a) smooth surface, b) surface with n = 0.02, c) surface with n = 

0.024, d) surface with n = 0.033. 

 

Table 2 shows the values of RMSE for the first and second methods, where RSME is defined as 

follows: 

                                     
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i
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2
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where expF  and numF  are values for the experimental and numerical run up. 

 

 
Table 2. Values of RMSE for the slopes of 5  and 10 degrees 

 
5 degrees 10 degrees 

Roughness First  method Second method First method Second method 

smooth 0.0135 0.0091 0.0025 0.0034 

n = 0.02 0.0072 0.0069 0.0097 0.0102 

n = 0.024 0.0016 0.0015 0.0026 0.0054 

n = 0.033 0.0014 0.0024 0.0034 0.0068 

 

Figure 9 shows wave run up for both smooth and rough surfaces with a Manning coefficient equal 

to n = 0.02 for both methods. 

 

   
(a)                                                                            (b) 

    
                                       (c)                                                                                

Figure 9. Comparison for run up over smooth and rough surfaces on slopes of: a) 5 degrees, b) 10 degrees, 

c) 15 degrees.  



 COASTAL ENGINEERING 2016 

 

 

11 

10. CONCLUSIONS 

ISPH method has been utilized to simulate wave propagation and run up. The model is capable of 

simulating the propagation of solitary and regular waves. It is also capable of simulating the whole 

process of wave propagation, shoaling, breaking and run-up on beach slopes.  

Two methods were used to evaluate the run up. In the first method the approach was based on 

computing the frictional force. In second method, the shear velocity was calculated from the wall 

function. 

It is concluded that run up to water depth ratio increases with the increase of wave amplitude to 

water depth ratio. The results showed that the effect of terrain roughness on wave run-up depends on 

both the roughness itself and the beach slope. These results showed that for wave run up over rough 

slopes, roughness can cause a reduction in run up height compared with wave run up on smooth slopes 

and run up height increases with increasing slope. The roughness effect on wave for a slope of 10 

degrees is smaller than that for a slope of 5 degrees. Generally, when the beach slope becomes milder, 

the effect of roughness increases. Both methods showed good agreements with the experimental data, 

with closer agreements for the second method for smooth surfaces, and surfaces with n = 0.02 and 

0.024, and also for the first method with n = 0.033 for a slope of 5°.  For the slope of 10°, the first 

method showed better agreements. 
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