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SAMPLING BIAS IN THE ESTIMATION OF SIGNIFICANT WAVE HEIGHT EXTREME 
VALUES 

Fabio Dentale1,2, Ferdinando Reale2, Felice D'Alessandro3, Leonardo Damiani4, Angela Di 
Leo2, Eugenio Pugliese Carratelli1,2 and Giuseppe Roberto Tomasiccchio3  

It has been shown before, and it is intuitively evident, that in a Significant Wave Height (SWH) time series, the longer the 
sampling interval, the lower is the number of events which are above a given threshold value. As a consequence, the use of 
data with a low time resolution (such as a 3 h sampling, for instance) causes a considerable undervaluation of the extreme 
SWH values for a given return time RT. In this paper an example of such a bias is provided, and a method is suggested to 
estimate it on a regional basis. Results may help to improve the use of historical wave meters data which were often 
collected with a low time resolution, and may also provide a tool to improve the application of Numerical Meteo-Wave 
models to the evaluation of extremes. 
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INTRODUCTION 
The evaluation of the extreme values of Significant Wave Height (SWH) and of their dependence 

on return period is an all-important step in the design of ships, coastal and offshore structures, as well 
as in the risk assessment of ship routing. 

The basic data for this kind of studies are generally provided by in-situ wave meters, satellite 
altimeters, meteo-wave models, or by a combination of the three (Chen et al. 2013; Feng et al. 2014a; 
Mentaschi et al. 2013; Xu et al. 2015). All these sources are affected by errors in various ways and to 
different extents: the limitations of models and of satellite altimeters as a source of historical data are 
obvious and are discussed elsewhere (Ganguly et al. 2015; Passaro et al. 2015; Sartini et al. 2015a; 
Kudryavtseva and Soomere 2016). In situ wave-meters, when available, are normally the best choice 
but – as it will be shown in the following – in certain circumstances they are also affected by a strong 
bias when used to determine extreme values. A bias in the determination of extreme values is indeed 
present in all sources of data whenever the sampling of the relevant parameter (SWH in our case) is 
carried out with too long a time interval as compared with the inherent time constant of the 
phenomenon (in our case the storm evolution). Fig. 1 exemplifies the problem by comparing SWH 
values as measured at 30’ and 3 hours intervals. 

 
Figure 1. Wave storm in the Tyrrhenian Sea recorded by Ponza (Italy) buoy on 8th-10th November 2010. SWH 
(Hs) time evolution is sampled with 30’ and 3h time intervals. The maximum values are shown to differ by about 
0.40 meters. 
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While the general trend of the storm evolution is the same with both sampling intervals, it is also 
clear that short term oscillations of the storm intensity (Reale et al. 2014) are not revealed by the data 
taken with a coarser time interval. The wind field is indeed subject to random oscillations which can 
sometime be considered as generated by wind “gustyness” (Abdalla and Cavaleri 2002). 

The 30’ sampling shows two peaks, the first at 02:30 on 9th November (HS = 3.47 m) and the 
second at 05:30 on 10th November with HS = 4.23 m. If the sampling interval is reduced to 3 hours, 
the maximum values at the two peaks are respectively 3.10 m (03:00 on 9th November), with a 
difference of 0.37 m, and 3.84 m (06:00 on 10th November), with a difference of 0.39 m. 

It is interesting to note, even if it is only indirectly relevant to the present work, that a similar 
problem also affects satellite SWH data. Spatial SSSV (Small Scale Storm Variations) are often 
revealed by altimeter tracks (Reale et al. 2014). See for instance Fig. 2 which shows a typical example 
of spatial SSSV between CryoSat altimeter data and ECMWF analysis data. 

 
Figure 2. SWH (Hs) data from CryoSat radar altimeter (Cycle 36, Passage 811) and ECMWF analysis on 22th 
January 2013 at 02:48 in the North Sea. 

In any case, generally speaking, it is reasonable to assume that a coarse sampling interval leads to 
an undervaluation of the maximum value (Cavaleri and Bertotti 2006). This paper reports on an 
empirical investigation on wave buoy data, aimed at clarifying such bias and at providing some 
information on its extent and relevance. The work is restricted to wavemeter data, since other sources 
are also affected by others sources of errors, which have to be dealt with separately. 

METHODOLOGY 
The analysis was carried out on 6 wave buoy data provided by the Italian National Wavemeter 

Network (RON): Alghero, Catania, Cetraro, Crotone, Mazara, and Ponza. 
These wave buoys have been operating for many years, and between 1989 and 2008 have provided 

SWH values (Hs) at 30’ intervals. Table 1 shows the data availability for RON buoys considered. 
Some data are however missing due to various reasons. 

 
Table 1. Italian National Wavemeter Buoys (RON - ISPRA) 
data series as used for this paper. 

Buoy Start End 
Alghero 01 - July - 1989 05 - April - 2008 
Catania 01 - July - 1989 05 - October - 2006 
Cetraro 01 - January - 1999 05 - April - 2008 
Crotone 01 - July - 1989 15 - July - 2007 
Mazara 01 - July - 1989 04 - April - 2008 
Ponza 01 - July - 1989 31 - March - 2008 
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All the original data considered were collected at 30’ time intervals; they were then degraded to 

1h, 3h and 6h interval by taking respectively a single SWH every two, six and twelve recorded values. 
It is worth noting that since SWH is itself an averaged parameter which has to be estimated over a 
certain duration of time, conceptually there is no proper “true” value; however, the 30’ sample in this 
context will be considered to be the “truth”, since it would not make sense to consider a shorter time 
interval. 

The following example - built upon the data of the RON buoy of Ponza - graphically shows how 
the sampling interval influences the duration curve (Fig. 3). 
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Figure 3. Number of events above a given SWH threshold for Ponza RON buoy Wavemeter: a) higher than 3 
meters; b) higher than 4.5 meters. 

It is visibly evident that the longer the sampling interval, the lower the number of events which 
are above a given value, and therefore the duration over such a value. 

It is thus to be expected that the choice of the sampling interval will also influence the result of 
extreme value calculations. An investigation was therefore carried out on all the data available on the 
above mentioned buoys. 

The Peak Over Threshold (POT) method was applied: a standard procedure, as described for 
instance by Sartini et al. (2015b), was followed to produce the Weibull distribution (Eq. 1). 
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 ( ) 1 exp
kH BF H

A

 − = −   
   

 (1)  

where A, B and k  are known respectively as scale, position and shape parameters. Parameters are 
estimated by choosing statistically independent storm peaks over a given threshold: after ordering the 

TN  independent storm peak SWH, (indicated in the following as iH ), in decreasing order, with 
1, 2,..., Ti N= , the empirical frequency iF  of each is taken to be (Eq.2): 

 1i
T

iF
N

α
β

−
= −

+
 (2)  

α  and β  are computed following Sartini et al. (2015b) as: 

 0.270.20
k

α = +  (3)  

 0.230.20
k

β = +  (4)  

By introducing the reduced variable y given by Eq. 5 

 H By
A
−

=  (5)  

then its value iy  for the ith empirical frequency iF  is calculated by the following Eq. 6 

 ( )
1

ln 1 ki iy F = − −   (6)  

and correspondent estimated values iH  by Eq. 7: 

 i iH Ay B= +  (7)  

Parameters A  and B  are estimated by minimizing the function ( , )S A B  given by Eq. 8: 

 ( )2

1

( , )
TN

ii
i

S A B H H
=

= −∑  (8)  

which represents the squared difference between the independent storm peaks iH  and the 

correspondent empirical frequency iF  estimated values iH . The value for the shape parameter 
distribution was taken as 1.40k =  i.e. the best fit value for our data. 

Once the distribution parameter are known, the SWH value H(Tr) for a given return period Tr (in 
years) is evaluated through Eq. 9: 

 ( ) ( )
1

ln λ = +   kr rH T B A T  (9)  

where λ  is the average yearly number of peaks over the threshold, given by the ratio between the 
total number of events TN  and the observation length (in years). 

An example is shown in Fig. 4 which provides the plots of Eq. 9 for various data set in one of the 
stations (Alghero). 
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Figure 4. Weibull interpolated H(Tr) values vs. return periods Tr for all the data and for various sampling 
intervals for Alghero RON buoy wavemeter. 

There is an obvious trend in the results: as it was to be expected, the higher the sampling interval, 
the greater the distance from the full data set, i.e. from the 30’ samples. The difference is relevant and 
can lead in most circumstances to an important under-evaluaution of design waves. The 100 years 
return wave, for instance, as estimated from the 6 hours data would be one meter lower than the value 
estimated with the “true” 30’ full data set. 

Since, as stated above, in many actual design problems only data with a low sampling rate are 
available (such is for instance the case of model-generated sea states), it is extremely important to be 
able to estimate the error deriving by such undersampling. To this end, we have made use again of Eq. 
9 to evaluate the SWH as a function of return period Tr for all the available data series. 

Indicating by s
rH  the Weibull value of the extreme SWH for a given station r and a given Tr 

computed from data with sampling interval s (e.g. 1h, 3h, 6h), and by a
rH  the “true” value computed 

with the whole data sets, i.e. with a 30’ sampling interval, the error is: 

 s s a
r r rE H H= −  (10) 

i.e. the difference between the extreme value derived from the undersampled series and the “true” 
value normalising with s

rH  yields the “ Estimated Relative Error” s
re  (Eq. 11) 

 
−

=
s a

s r r
r s

r

H He
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 (11)  

s
re  is in turn treated as a random variable whose statistical distribution is common to all the data 

sets from the various buoys in a given geographical area. The statistical parameters of such a 
distribution, i.e. its mean μ s

e  and its standard deviation σs
e , are estimated as: 

 
1
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= ∑
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where N the number of wavemeter buoys considered (6 in this example). 
So if s

rH  is known, the expected value of a
rH , est

rH  can be evaluated as 
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 µ= + ⋅est s s s
r r r eH H H  (14)  

It is therefore an easy task to estimate est
rH  from the six hours data 6

rH  by making use of Eq. 14. 

Results are shown in Fig. 5 where the Extreme Significant Wave/Return Time functions for est
rH  

6
rH  and a

rH  are compared for all the available stations. 
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Figure 5. SWH as a function of return period Tr computed from 30’ data Ha (blu line), from 6 hours data H6 
(dashed red line) and estimated data Hest from Eq. 14 (dashed green line). 

The results are quite impressive, as they seem to show that very good estimates of extreme 
Significant Wave Heights can be obtained by combining low time resolution data from a single 
location with error estimates for the whole area; this would imply that the statistical distribution of the 
Relative Errors is quite consistent. This conclusion, however, might be only hold for the particular 
West Mediterranean area considered, so the procedure will have to be tested in various sea locations. 

CONCLUSION 
As the sampling interval of the Significant Wave Height measurements increases, the probability 

that extreme values may be missed increases as well. Since past historical data records often provide 
just data sampled at 3 or 6 hour intervals, the estimation of high return time wave heights can be 
seriously biased, as compared with high density data – half an hour or less: an application which is of 
growing importance as wave climate changes are being investigated (Feng et al. 2014b; Passaro et al. 
2015; Liang et al. 2016). A method has been supplied to estimate such a bias, and to compute 
Significant Wave Heights as a function of the return period. 
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The approach we presented may also provide a tool to improve the application of model generated 
wave data to the evaluation of extremes, most of the historical data of such models are only available 
at coarse time intervals. 

An obvious future development lies on the necessity of introducing an estimation of the 
probability of the Relative Error itself by considering not only its expected value but also it variance; it 
should therefore be possible to estimate a given probability of its exceedance value, thus giving a 
fuller picture of the incertitude of extreme Significant Wave Heights. 
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