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Tsunami generation have commonly been modeled by using the Okada method (see Okada (1992)), i.e. from seismic
data, the final ground deformation is calculated and applied to the free surface as an initial deformation. Using this
method, lot of aspects of the generation are neglected, including timescales. The aim of this study is to measure the
influence of temporal parameters during a simplified kinematic generation. In this purpose, a junction between the
work of Hammack (1973) and Todorovska and Trifunac (2001) is done to built a linear semi-analytical solution of
the free surface deformation depending simultaneously of the the rise time, tr , and the rupture velocity, vp. They
characterize the vertical and horizontal motions respectively. This solution is compared and validated with numerical
simulations and the influence of the temporal parameters is measured by varying their values in a large range. A
resonance phenomenon appears, as noticed by Todorovska and Trifunac (2001), but only for short rise times. It
manifests an amplification of the generated wave amplitude against the ground deformation amplitude at the end of
the motion. Then, using numerical simulations, this conclusion is briefly extended to the nonlinear regime.
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INTRODUCTION
Most of tsunamis are generated by earthquakes, i.e. kinematic seafloor deformations. However, the

traditionnal way to model the generation of a seismic tsunami is to estimate the ground deformation with
the calculation method from Okada (1992) and to transfer instantaneously the final vertical deformation to
the free surface. With this method, some aspects of the generation are not included as recalled by Nosov
(2014), among them the kinematic aspect of the ground deformation. Even if this approximation is generally
acceptable, some events, called "Tsunami earthquakes" by Kanamori (1972), involve slow dynamics which
can impact the form and properties of the generated wave. Kinematic generation has already been studied
in the past for real case events, as done by Dutykh et al. (2013), or idealised ground motions. Generally,
the idealised displacement depends on a single temporal parameter while two can be defined: the rise time
tr and the rupture velocity vp, that represent the vertical and horizontal timescales respectively. The major
contributions about these parameters were done by Hammack (1973) for the rise time and Todorovska and
Trifunac (2001) for the rupture velocity. The present study is built on their work. First, a semi-analytical
solution of the free surface deformation for a linear idealised ground displacement is developped with the
aim of measuring the influence of tr and vp. A cross validation is performed with numerical results obtained
from the linear version of the code Misthyc and an amplification ratio of the free surface against the sea floor
deformations is defined. This linear analysis emphasizes a resonance phenomenon at certain tr and vp for
which the amplification ratio reaches large values. Then, this behaviour is briefly numerically generalised
to the nonlinear regime.

LINEAR THEORETICAL MODEL
The considered fluid domain is represented in Figure 1a. The analysis is restricted here to one un-

bounded horizontal direction x. The Coriolis and surface tension effects are neglected. The fluid is assumed
incompressible and inviscid. It is delimited by the free surface z = η(x, t) and the sea floor z = −h + ζ(x, t),
where h is the uniform depth and ζ the sea floor deformation.
Initially, the fluid is at rest with η(x, t = 0) = 0 and ζ(x, t = 0) = 0. To simplify the problem, the ground

motion is reduced to an uplift of a rectangular block which propagates with a given rupture velocity vp along
the x axis for x ∈ [0, L], L being the deformation length. The vertical deformation reaches the maximal
amplitude ζ0 in a finite time, the rise time tr, along the z axis. Figure 1b gives a schematic representation of
this motion. Building on the previous work of Hammack (1973) and Todorovska and Trifunac (2001), that
only considered one temporal parameter, the deformation is defined here as:

ζ(x, t) = ζ0H(L − x)H(x)T (x, t) (1)

T (x, t) = H(t −
x
vp

)H(
x
vp

+ tr − t)
1
2

(1 − cosωr(t −
x
vp

)) + H(t −
x
vp
− tr), (2)
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(a) (b)

Figure 1: 1a: Definition of the considered domain and coordinate system. h is the uniform water depth,
ζ(x, t) and η(x, t) are the sea floor and free surface deformations, respectively. 1b: Definition of the kinematic
sea floor deformation with ζ0 the amplitude of the deformation, vp the rupture velocity, tr the rise time and
L the deformation length. The grey zone is transitional while the solid lines represent the final state.

with ωr = π/tr and H is the heaviside function. If tr = 0s, the expression corresponds to the 1D definition
given by Todorovska and Trifunac (2001), and if the limit is taken for vp → ∞, the definition of Hammack
(1973) is recovered.
The flow is irrotational, thus there exists a velocity potential φ(x, t) which satisfies the Laplace equation and
the boundary conditions. Under the assumption of small perturbations, the problem is linearized as follows:

52φ = 0, (3)
φz = ηt z = 0, (4)

φt + gη = 0 z = 0, (5)
φz = ζt z = −h, (6)

where subscripts t and x indicate partial derivatives.
The Fourier–Laplace transform is introduced as:

FL( f ) = f̄ (k, s) =

∫
<

e−ikxdx
∫ +∞

0
f (x, t)e−stdt, (7)

FL−1( f̄ ) = f (x, t) =
1

2π

∫
<

eikx 1
i2π

∫ γ+i∞

γ−i∞
f̄ (k, s)estdkds. (8)

where γ is a real constant that insures the existence of the integral. This transform is applied to the system 3-
6 giving:

φ̄zz − k2φ̄ = 0, (9)
φ̄z = − s2

g φ̄ z = 0, (10)

φ̄z = sζ̄ z = −h, (11)
sφ̄ = −gη̄ z = 0. (12)

An analytical solution of Eq. 9-11 in (k, s) space is found as:

φ̄(k, z, s) =
−sgζ̄(k, s)

(s2 + ω2) cosh kh

[
cosh kz −

s2

gk
sinh kz

]
, (13)

thus from Eq. 12,

η̄(k, s) =
s2ζ̄(k, s)

(s2 + ω2) cosh kh
, (14)

where ω2 = gk tanh kh is the linear dispersion relation. Using the transform Eq. 7 with the definition of the
sea floor deformation Eq. 2, we obtain the analytical solution in this particular case:

ζ̄(k, s) =
ζ0

2
(1 + e−str )

ω2
r

s(s2 + ω2
r )

1 − e−L(ik+ s
vp

)

ik + s
vp

, (15)
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η̄(k, s) =
ζ0

2
s

(s2 + ω2) cosh kh
(1 + e−str )

ω2
r

s2 + ω2
r

1 − e−L(ik+ s
vp

)

ik + s
vp

. (16)

To come back to the physical space (x, t), first an analytical inverse Lapace transform is performed on Eq. 16
giving an analytical Fourier transform of the free surface deformation:

F (η)(k, t) =
ζ0

2
vp

cosh kh
ω2

r

ω2
r − ω

2


f (k, t)
+H(t − tr) f (k, t − tr)
−H(t − L

vp
)e−ikL f (k, t − L

vp
)

−H(t − tr − L
vp

)e−ikL f (k, t − tr − L
vp

)

 , (17)

with:

f (k, t) = 1
ω2−k2v2

p

(
ikvp cos(ωt) + ω sin(ωt) − ikvpe−ikvpt

)
(18)

− 1
ω2

r−k2v2
p

(
ikvp cos(ωrt) + ωr sin(ωrt) − ikvpe−ikvpt

)
.

Then, a numerical integration with Simpson’s method is used to calculate the free surface deformation (the
inverse Fourier transform of Eq. 17, as a closed form is too complex to obtain.

η(x, t) =
1

2π

∫
R

eikxF (η)dk. (19)

From now, only dimensionless notations, annoted with ∗, will be used. The dimensionless variables are
defined as follows:

η∗ =
η

h
, t∗ = t

√
g
h
, x∗ =

x
h
, ζ∗ =

ζ

h
, (20)

and the parameters become:

τ∗ =
tr
L

√
gh, v∗p =

vp√
gh
, L∗ =

L
h
. (21)

The dimensionless temporal parameters, τ∗ and v∗p, have already been defined by Hammack (1973) and
Todorovska and Trifunac (2001), respectively.

INFLUENCE OF THE TIMESCALES
The linear solution derived in the previous section is now used to study the influence of τ∗ and v∗p on the

wave trains generated by the kinematic sea floor deformation Eq. 2. For this purpose, the semi-analytical
solution Eq. 19 is calculated for a large panel of their values.

Theoretical free surface deformation at the end of the sea floor motion
By convention, we define the end of the generation period, and thus the beginning of the propagation

one, when the ground stops moving, i.e. at t∗ = t∗r + L∗/v∗p. For this study, the deformation length is kept
constant as L∗ = 50. Also, the value of the deformation’s amplitude ζ∗0 is considered minor since the model
is linear (linear solution proportional to it), thus the result will show the ratio η∗/ζ∗0 . The rupture velocity
v∗p varies between 0.5 and 50, and the rise time τ∗ between 0 and 5.
The spatial profiles of the solution for a sample of these values are compared in Figure 2 with those given by
the numerical program Misthyc, which solves the Zakharov equations (see Zakharov (1968)). The choice
of the equations is leaded by its capacity to well represent the nonlinearity and the dispersion of wave prop-
agation. Misthyc proved very efficient in predicting nonlinear or linear dispersive water wave (Yates and
Benoit (2015)). The code is used here in a linear mode, corresponding to solving the system 3-6. This
comparison validates the theoretical solution as the curves are almost superimposed.
The maximum free surface elevation η∗max/ζ

∗
0 varies with v∗p and τ∗. If v∗p = 50 (i.e. very large) and τ∗ = 0,

the free surface deformation is almost identical to the sea floor deformation (i.e. η∗max/ζ
∗
0 ' 1) since the

deformation is nearly instantaneous in both horizontal and vertical directions. When τ∗ increases, the wave
begins to propagate before the end of the ground motion as noted by Jamin et al. (2015), the wave amplitude
is smaller, and the wave propagates in both directions (±x). When v∗p decreases, an asymmetry appears: the
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(b) v∗p = 0.5; τ∗ = 1
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(c) v∗p = 0.5; τ∗ = 2
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(d) v∗p = 1; τ∗ = 0
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(e) v∗p = 1; τ∗ = 1
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(f) v∗p = 1; τ∗ = 2
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(g) v∗p = 2; τ∗ = 0
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(h) v∗p = 2; τ∗ = 1
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(i) v∗p = 2; τ∗ = 2
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(j) v∗p = 10; τ∗ = 0
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(k) v∗p = 10; τ∗ = 1
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(l) v∗p = 10; τ∗ = 2
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(o) v∗p = 50; τ∗ = 2

Figure 2: Free surface profiles at t∗ = t∗r + L∗/v∗p for L∗ = 50 and different values of v∗p and τ∗ (v∗p increases
from top to bottom and τ∗ increases from left to right). The red line is the linear solution Eq. 19, and
the dashed black line is the numerical simulation results from the linear version of the Misthyc code. The
vertical scale of graph (d) for v∗p = 1 and τ∗ = 0 differs from the others for clarity.

wave propagating in the same direction as the ground deformation (+x) is larger.
Figure 3 shows the dependency of η∗max/ζ

∗
0 on the temporal parameters in v∗p − τ

∗ space. For small τ∗, the
parameter v∗p has a strong influence on the maximum amplitude. As shown by Todorovska and Trifunac
(2001), a resonance appears for v∗p in the range 0.7 to 2 (i.e. close to v∗p = 1) generating a wave that reaches
an amplitude η∗max/ζ

∗
0 larger than 1. The maximum free surface amplitude can reach six times the bottom

deformation amplitude at v∗p = 1. Thus, when the rupture velocity is close to the wave velocity, the ampli-
tude of the generated wave is much larger than the amplitude of the sea floor deformation at the beginning



COASTAL ENGINEERING 2017 5

 0  1  2  3  4  5

τ*

 1

 10

 100

v
p

*

 0.1

 1

η
* m

a
x
/ζ

0
*

Figure 3: The maximum free surface amplitude, η∗max/ζ
∗
0 as a function of v∗p and τ∗ for L∗ = 50 at t∗ =

t∗r + L∗/v∗p (colour in log scale).

of the propagation phase. However, this resonance only exists for small values of τ∗.
The deformation’s length is then varied in the particular case of v∗p = 1 and τ∗ = 0. In Figure 4, the ratio
η∗max/ζ

∗
0 is plotted as a function of L∗.
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Figure 4: Impact of the deformation’s length with v∗p = 1 and τ∗ = 0. The red crosses are the ratios η∗max/ζ
∗
0

and the black line is the trend line 0.414(L∗)0.669.

The maximum amplitude of the deformation is larger for larger L∗. This is consistent with the fact that
a larger volume of water is displaced. The maxima can be reasonably well fitted with a power law of the
form:

η∗max/ζ
∗
0 = 0.414(L∗)0.669 for L∗ ∈ [0; 5000]. (22)

Propagation stage
The propagation of the generated wave is analysed as a function of v∗p and τ∗, with fixed L∗ = 50.

Similarly to what was done at the end of the ground motion, the theoretical free surface deformation is
estimated for larger times and the spectrum of the ratio η∗max/ζ

∗
0 is calculated at t∗ = 100, 500 and 1000 as

shown in Figure 5. The shape of the dependence does not change with time, except for small v∗p and large
τ∗ because the end of the ground motion occurs later than t∗ = 100. However, the ratio decreases in time
around v∗p = 1 and small τ∗, where the amplitudes are greater than 1, thus resonance is preserved for these
times but the amplification may disappear after a while. Figure 6 shows the evolution of the free surface
deformation η∗/ζ∗0 as a function of x and t for v∗p = 1 and τ∗ = 0. The wave asymmetry is clearly visible.
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(c) t∗ = 1000

Figure 5: Maximum free surface amplitude η∗max/ζ
∗
0 as a function of v∗p and τ∗ for L∗ = 50 at different times

t∗. (colour in log scale).

Moreover, a dispersion phenomenon appears in the +x direction, explaining the decrease of the maximal
wave amplitude.
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Figure 6: Evolution in space and time of the free surface deformation η∗/ζ∗0 for v∗p = 1 and τ∗ = 0. The
colour represents the normalized wave amplitude.

NUMERICAL SIMULATION OF NONLINEAR PROPAGATION
In this section, we briefly investigate how the resonance observed in the linear model behaves when

nonlinear effects are taken into account. The previous problem is now solved numerically with the nonlin-
ear version of the Misthyc code.
First, the deformation is kept linear, i.e. with a very small ground deformation amplitude: ζ∗0 = 0.001. As
done with the linear theory, the maximal amplitude ratio η∗/ζ∗0 is calculated at the end of the ground motion
for the same range of parameters (v∗p and τ∗). The spectrum is shown in Figure 7 and is very similar to the
one from the linear theory in Figure 3. Then, the nonlinearities are introduced by increasing the amplitude
of the sea floor deformation ζ∗0 from 0.001 to 0.1. The free surface deformation is only computed for v∗p = 1
and τ∗ = 0 and is plotted in Figure 8 at the end of the ground motion.
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Figure 7: The maximum free surface amplitude (η∗max/ζ
∗
0) calculated with the nonlinear numerical model as

a function of v∗p and τ∗ for L∗ = 50 at t∗ = t∗r + L∗/v∗p (colour in log scale).

The numerical results for ζ∗0 = 0.001, 0.005, 0.01 are close to the linear solution. The general wave
form is preserved, and the maximum amplitude increases slightly with ζ∗0 . For ζ∗0 = 0.05 and 0.1, the prop-
agation is faster. The frequency dispersion is more pronounced, and the first generated wave seems to have
split already in two for ζ∗0 = 0.1, leading to a lower maximum amplitude than observed in the other cases.
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Figure 8: Deformation of the free surface at t∗ = T ∗ and for v∗p = 1 and τ∗ = 0: comparison of the linear so-
lution (black line) and nonlinear numerical results. The coloured dashed lines represent the dimensionless
nonlinear numerical results for different increasing nonlinearity levels: ζ∗0 = 0.001, 0.005, 0.01, 0.05, 0.1.

In reality, this kind of deformation (ζ∗0 = 0.05 and 0.1) is very large for seismic tsunami generation: the
ground deformation is usually on the order of 10 m for a water depth of 4000 m, leading to ζ∗0 on the order
of 10−3.
Finally, for every value of ζ∗0 , the wave generated is larger than the deformation’s amplitude. Thus, the res-
onance is not restricted to a linear framework. However, from a certain level of nonlinearity, the dispersion
phenomenon appears faster, that leads to smaller maximal wave amplitude.

CONCLUSION
A linear semi-analytical solution is built and validated for the free surface deforamtion generated by a

simplified motion of the sea ground. This motion is function of tr (the rise time) and vp (rupture propagation
velocity). We studied the influence of the timescales by estimating the amplification ratio, η∗max/ζ

∗
0 , between

the maximal amplitude of the free surface deformation and the final ground deformation amplitude. The
spectrum of the amplification ratio shows that a resonance exists for rupture velocities close to the linear
wave celerity (

√
gh, as emphasized by Todorovska and Trifunac (2001)) and short rise times. This reso-

nance manifests as high ratio η∗max/ζ
∗
0 that can be greater than 1. The value of the ratio is function of the

deformation length, an empirical relation suggests a power law. Moreover, numerical simulations showed
that this resonance is not restricted to the linear theory and is still present within a nonlinear framework
even if frequency dispersion decreases the maximal free surface amplitude for the largest ζ∗0 .
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