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Abstract 

A general formalism for computing the nonlinear interactions between triads of 
coastally-trapped gravity and vorticity waves is developed. An analysis of the linearized 
problem reveals that gravity (or edge) waves and vorticity (or shear) waves exist as 
members of the same non-Sturm-Liouville eigenvalue problem, with unstable shear 
waves representing the complex eigenvalue portion of the resulting spectrum. Interac- 
tion equations derived here cover resonant interactions between three edge waves, three 
shear waves, or a shear wave and two edge waves. Numerical examples are shown for 
the case of three edge waves on a planar beach in the absence of a longshore current. It 
is found that edge waves can exchange significant amounts of energy over time scales 
on the order of ten wave periods, for realistic choices of edge wave parameters. 

Introduction 

The low frequency wave climate on an open coastal beach contains a complex mix 
of trapped gravity wave motions (edge waves) as well as vorticity (or shear) waves 
associated with the instability of the longshore current. To date, there has been a 
tendancy in the literature to treat both classes of motion as isolated systems in which 
the principle effect of nonlinearity is through amplitude dispersion. Formulations of 
this type typically treat the wave field in terms of a wave envelope modulated by 
cubic nonlinearity, leading to the cubic Schrodinger equation for conservative edge 
wave systems (Yeh, 1985) or Ginzburg-Landau equation for marginally unstable shear 
waves (Feddersen, 1998). However, in field conditions, all of these motions occur in 
a relatively dense spectral environment, and the existence of combinations of waves 
satisfying three-wave resonance conditions makes it likely that the dominant nonlinear 
mechanism affecting edge or shear waves would be through resonant interactions at 
second order. 

Direct numerical simulations (Allen et al, 1997; Ozkan-Haller and Kirby, 1998) 
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suggest that the growth to finite amplitude of the shear wave climate involves strong 
nonlinear interaction between the various length scales in the motion. It is likely that 
there are also opportunities for edge waves to undergo strong interactions, although 
this pathway has not been heavily investigated to date. All of these interactions 
contribute to the final evolution of the low frequency climate on a beach, which may 
or may not have some sort of equilibrium configuration. 

The goals of present study are to: 

1. Derive evolution equations describing the nonlinearly-coupled evolution of the 
discrete modes of the low frequency wave climate. 

2. Use these equations to investigate the full range of edge wave - edge wave, shear 
wave - shear wave, and edge wave - shear wave interactions. 

3. Couple the resulting system to incident wave conditions. 

4. Investigate the equilibrium statistics of the resulting low-frequency wave climate, 
and compare to field measurements. 

The core of our approach to this problem is the development of a spectral model 
describing nonlinear interactions between the free waves of the system by means of 
resonant interactions at second order. To date, the literature has identified the pos- 
sibility of these resonances for the case of three edge waves (Kenyon, 1970; Bowen, 
1976) or three shear waves (Shrira et al, 1997). We wish to add to this list the possi- 
bility of a triad involving a single shear wave and two edge waves, either of which can 
be propagating with or against the shear wave. Figure 1 illustrates such a case with 
all three waves propagating in the same direction as the longshore current. A general 
framework for computing these interactions is outlined below, and then specialized to 
the case of edge waves on a planar beach with no current in order to obtain analytical 
results. 

Formulation of the Problem 

For simplicity, our attention here is restricted to the case of unforced, undamped 
nonlinear long wave motions on a longshore uniform beach. The inclusion of forcing 
would lead to a coupling of the low-frequency motion to the incoming short wave cli- 
mate (Lippmann et al, 1997). The introduction of longshore variability would extend 
the present analysis to include both the slow variation of model parameters in the 
longshore direction as well as the direct scattering of wave modes by wavelength-scale 
bottom features (Chen and Guza, 1998). These topics will be addressed in extensions 
of the present work. 

The dependent variables in the present analysis are the surface displacement 
r/(x, y, t), cross-shore velocity u(x, y, t) and longshore current v(x, y, t) + V(x), where 
a distinction is made between the mean current profile V(x) and the wave-induced 
fluctuations v(x,y,t). The governing equations are given by 

d^ + {hu)x + hvy   =   -(Vu)x-(Vv)y~ "N (1) 
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Figure 1: Diagram illustrating hypothetical resonant triad interaction involving a 
shear wave and two edge waves. Identifying the shear wave as the first wave in the 
triad, the origin of the edge wave dispersion curve is translated up the shear wave 
dispersion curve to the locus of shear wave frequency and wavenumber. Resonances 
involving two edge waves are then indicated by the intersections of the original and the 
translated edge wave dispersion curves. The two dashed lines here indicate two edge 
waves with the same mode number and propagating downstream with the longshore 
current. 

d (hu) 

dt 
+ ghrix   =    — huux - hvUy UN 

d(hv) 

dt 
+ V' (hu) + ghrjy   =   -huvx - hvvy = "N 

where a prime denotes differentiation with respect to x, and where 

d       d      ,rl . d 

dt = ¥t + V(x)d-y 

(2) 

(3) 

(4) 

is a time derivative following the local mean current. Eliminating u and v from linear 
terms gives 

d \d2T) 

dt    dt2 9{hr]x)x ~ ghVyy \ + 2ghVVxy = (e)N.L.T. 

where 

N.L.T. = jt {^ - ("N)x- (»JV)„} + 2V'CN)V 

(5) 

(6) 
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and where e denotes a small parameter characterizing the weakness of the wave mo- 
tions. 

The Linearized Problem 

We first seek solutions to the linearized problem, obtained by taking the limit e = 0 
in (5). Solutions will be of the form 

v   =   F^e1^-^ (7) 

u   =   G(x)e'^-^;     G(x) = ^F'(x) (8) 
a 

v   =   H(x)ei(Xy-ut);     H(x) = ^{\F~- (—\ F'\ (9) 

where 
a = co - XV (x) (10) 

is the local intrinsic frequency of the wave with respect to the local longshore current 
velocity. Substituting (7)-(9) in (5) gives an eigenvalue problem which may be written 
in self-adjoint form (Howd et al, 1992) as 

F bounded at a: = 0 ,   F|0as i->oo (12) 

which is not convenient for solution of the eigenvalue problem but which serves as a 
basis for establishing solvability conditions in the nonlinear problem. The resulting 
eigenvalue problem is a non-Sturm-Liouville eigenvalue problem for {Fr(x),ojr} given 
A and h{x). There are possible singularities at ar = u>r — XVC = 0, where Vc denotes 
the critical longshore current velocity. Possible types of solutions include: 

1. Gravity motions without a critical level in the current profile —• Distorted "reg- 
ular" edge waves (Howd et al, 1992) 

2. Gravity motions in the presence of a double set of critical levels, including: 

(a) Waves trapped against the shore by the faster offshore velocity (Falques 
and Iranzo, 1992). 

(b) Waves trapped between the critical levels, propagating upstream relative 
to the current (Bryan and Bowen, 1998) 

(c) Waves trapped between the offshore critical level and deep water (hypo- 
thetical). 

3. Vorticity motions representing the unstable growth of meanders in the longshore 
current (where u>r is complex; Bowen and Holman, 1989) or the stable propaga- 
tion of similar meanders (Falques and Iranzo, 1992; Bowen and Holman, 1989). 
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For a given A, the orthogonality condition for two modes with distinct mode num- 
bers 71, m and frequencies ojn,u>m is easily established, 

f°° gh{an + <Tm) 
io      (<r")2(am)2 

00
   nDI/T"  4-/T"*l     f -, 

JFn'Fm' + A2F"Fm}(fx = 0 

but we do not have a theorem for the completeness of the F" basis. Since the system 
is of non-Sturm-Liouville form, we expect to obtain a complex spectrum of eigenval- 
ues, of which the components containing positive imaginary parts will correspond to 
unstable and growing vorticity modes, or shear waves. We wish to emphasize here 
that the edge waves and shear waves are members of the same basis of eigenfunctions. 

The Nonlinear Problem 

Returning to the full problem, we follow the usual approach for obtaining evolution 
equations for variation of modal amplitudes on slow time and longshore space scales. 
We introduce multiple scales in order to identify slow changes of modal amplitudes in 
time and in longshore distance. 

t-H + et   =   t + T (13) 

y-^y + ey    =    y + Y (14) 

We then introduce an expansion for r?, 

v = j/1) + o/2> (15) 

The solution for r/W corresponds to a superposition of all eigenmodes of the linearized 
system, 

V--' = E E ^AnVWKWK + comPlex conjugate (16) 

where 

is the oscillatory dependence on fast time and longshore distance, and the F£ are the 
eigenmodes of the linear eigenvalue problem. At O(e), we get a forced problem for 
each n, r combination. We require the forcing for each component to be orthogonal 
to the solution of the adjoint of the original eigenvalue problem. Nonlinear terms in 
the system may be simplified by imposing resonance conditions, given by 

±A,±Am-A„   =   0 (18) 

JZe{±w?±««,-«;}    =   0 (19) 

The final evolution equation for each discrete mode in the system has the form 

KT+cinAiY = .E£EEi+rs:^yc+m-B)«K+<-<) 
l      m     p      q 

+ .TZnAfAVS(l - ro - «)«(«? - < - Sn) 
+ -TZ„Ar A«J(m - I - «)<*« - co? - <)} (20) 
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where +T and _T are complicated interaction coefficients for sum and difference in- 
teractions respectively. The group velocity Cv

gn for each mode is given by 

Cfl"" FI^Mi^wI^ (21) 

In the no-current limit, the corresponding group velocity for edge waves on an arbitrary 
profile reduces to 

given originally by Pearce & Knobloch (1994). 

In order to proceed beyond this point to a numerical determination of a solution, 
a number of steps need to be carried out. First, a reliable method of determining so- 
lutions for the linear eigenvalue problem must be established. Then, given eigenvalue 
pairs {A„,w^}, we require an algorithm to reliably search for solutions to resonance 
conditions. Finally, an accurate means for evaluating integrals in expressions for Cg 

and the nonlinear coupling coefficients must be developed. 

Edge Wave Interactions 

In this section, we consider the special case of interaction between triads of edge 
waves on a planar beach in the absence of currents. In this case, the mode structure 
and wave dispersion relation is known, and model interaction coefficients may be 
evaluated analytically. 

The possibility of triad interactions between progressive edge waves has been men- 
tioned many times but not often addressed in a direct way. Kenyon (1970) provides 
a version of the Hasselmann interaction equations for random edge wave interactions, 
but provided no calculations. Kochergin and Pelinovsky (1989) consider the case of a 
colinear triad (all waves propagating the same direction) and show results for a single 
interacting triad. We will establish below that their results are wrong. 

For the case of no currents, the interaction coefficients reduce to: 

rppqr ±±iZn = "f(±<)[8^/ ra'd*]-1- 
JO 

{2(wf ± <)Ff F«mFn + tfFfFS, Fr
n ±<i? F^F' 

+ [2(u,?±ul)\f(T\l)-u?(\lf^uU\jy]F['F2lFr}dx     (23) 

For a planar beach, the F* are given in terms of Laguerre polynomials by 

F:(x)=e-^*Lr(2\\n\X) (24) 

Solutions for isolated triads are obtained in terms of Jacobi elliptic functions. In the 
cases we have investigated, we have found that cases involving counterpropagating 
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Wave    Mode    Frequency Wave number 

1            0              wi Ai 

\ui A2 = - 

3            1         w3 = fwi A3 = |Aj 

Table 1: Case 1. Parameter,? for lowest-order edge wave triad involving counter- 
propagating zero-mode waves. 

waves show strong interactions with energy exchange time scales on the order of 10 
wave periods. In contrast, cases involving colinear waves have interaction coefficients 
of zero, indicating an absence of interaction, contrary to the results of Kochergin 
and Pelinovsky (1989). Because this result is at odds with the existing literature, 
we verify it using a direct numerical simulation. The spectral-collocation method of 
Ozkan-Haller and Kirby (1997) is used to obtain direct numerical solutions of the 
nonlinear shallow water equations with shoreline runup. 

Results and Numerical Verification 

As a first example, we consider the lowest-order triad involving two counter- 
propagating zero-mode edge waves, with the relation between frequencies, wavenum- 
bers and mode numbers as indicated in Table 1. The geometry of the triad in 
wavenumber-frequency space is indicated in Figure 2. The resulting interaction equa- 
tions are given by 

iu>? 
—   -    ^jAZAs (25) 

A- = i$A*A> ^ 
9^AlA2 (27) JJ 64gs2 

\Ai\2 + \A2\2 + \A3\2    =    constant (28) 

In this case, the parameters are chosen such that u>i corresponds to a wave with a 
period of 20s on a beach with a slope of 1 : 10. In the results illustrated in Figure 3, 
we have initialized the triad by giving waves 1 and 2 amplitudes of 10cm, with wave 
three having no amplitude to start. The resulting solution for the triad interaction is 
shown in Figure 3 by the smooth curves. The results indicate a complete exchange 
of energy between one of the Mode 0 waves and the Mode 1 wave propagating the 
same direction. The exchange occurs in somewhat less than 20 periods of the Mode 0 
wave. The counterpropagating Mode 0 wave is crucial to the interaction but exchanges 
only a small amount of energy with the other modes. This non-reactivity of the 
counterpropagating wave has been noted for a wide range of initial conditions. 

The analytic results shown in Figure 3 have been verified using direct numerical 
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Single triad - counterpropagating case 

0 2 
wavenumber 

Figure 2: Resonant triad edge-wave interaction with counterpropagating components. 

simulation with the pseudospectral model of Ozkan-Haller and Kirby (1997). Results 
from that model were obtained by Fourier transforming the longshore dependence of 
the runup tip. Results are shown in Figure 3 as the curves with smaller-scale jitter 
in time. (This jitter occurs at wave-period or sub-wave-period scales, and is probably 
associated with the fact that the linear edge waves input as initial conditions differ 
from fully nonlinear solutions to the problem.) Agreement between analytical triad 
results and numerical solutions are close, with the numerical solutions indicating a 
slightly slower energy exchange time and a tendency for energy to leak out of the 
three components making up the triad. 

The fate of the missing energy can be seen in the plot of the frequency-wavenumber 
spectrum computed from the numerical solution, shown in Figure 4. The spectrum is 
dominated by the three waves making up the resonant triad, but there are clear con- 
tributions at forced, non-resonant peaks representing sum and difference interactions 
lying off the edge wave dispersion curves. There has also been an excitation of the 
Mode 0 edge wave at twice the wavenumber of Wave 1, and at a frequency that is 
not commensurate with any sum or difference combination in the original triad. The 
mechanism for exciting this free wave is not clear and may be associated with start-up 
transients in the initial value problem. 

Figure 5 shows one longshore period of the numerically computed wave field at 
two instances in time. The top panel shows the situation at 20 wave periods into 
the simulation, where the wave field is dominated by the higher-frequency Mode 1 
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1.4 
Interaclion of opposite-going edge waves, lowest mode combination 

1.2 . 
Wave 3: mode 1 
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Figure 3: Comparison of time series of modal wave amplitudes: analytic and numerical 
results. 

Figure 4:   Frequency-wavenumber spectrum for case of counterpropagating waves. 
Direct numerical simulation. 
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Figure 5: Snapshot of numerically computed instantaneous wave field showing condi- 
tions dominated by Mode 1 wave (top panel) and Mode 0 wave (lower panel). 

wave riding on the longer, counterpropagating Mode 0 wave. The lower panel shows 
the situation at 40 periods (close to the end of the recurrence cycle), where the two 
counterpropagating Mode 0 waves dominate the wavefield. 

As a second example, we consider the case elaborated by Kochergin and Pelinovsky 
(1989) with all waves travelling the same direction, illustrated in Figure 6. The param- 
eters for the lowest-order case are indicated in Table 2. The present theory indicates 
that nonlinear interaction coefficients reduce to zero, giving solutions Ai,Ai,A3 = 
constant. Figure 7 shows time histories for the first twelve Fourier modes of the 
longshore runup in a direct numerical simulation, with modes k = 1 and k = 3 cor- 
responding to the initialized low-frequency modes in the triad. The numerical results 
indicate no interaction between the initialized modes and an absence of growth of the 
third member of the possible triad. This result is also clear in the resulting frequency- 
wavenumber spectrum shown in Figure 7, which shows an almost complete lack of 
energy appearing at the third component, which would appear at scaled wavenumber 
k = 4 and frequency / = 2. 
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Wave Mode Frequency "Wave number 

1 0              wi Ai 

2 1 u)2 = wi A2 = §At 

3 1 u>3 = 2ui A3 = |Aj 

Table 2: Parameters for lowest order triad with waves propagating in the same direc- 
tion, as in Kochergin and Pelinovsky (1989). 

Conclusions 

In this paper, we have described a framework for deriving coupled-mode equations 
for a sea of edge waves and shear waves. Interaction coefficients have been obtained 
for the special case of edge waves on a plane beach in the absence of currents. For 
this system, interactions have been shown to exist and to be fairly rapid for triads 
involving counterpropagating waves. Triads involving unidirectional propagation have 
been found to not lead to interaction, in contradiction to the existing literature. We 
do not yet have a conclusive proof that this result holds for all colinear edge wave 
triads on a planar beach, but it has been found to hold for all combinations tested 
so far. Results for both cases have been verified by direct numerical simulation. The 
close agreement between numerical and analytic results also indicates that a weakly 
nonlinear formulation is appropriate for examining edge wave interactions. This result 
is to be expected due to the strongly dispersive nature of the edge wave motions. 

The work on edge wave interactions is presently being extended to look at more 
complicated systems involving multiple coupled triads, leading up to an evaluation of 
equilibrium distribution of energy in a random sea of edge waves. In order to further 
this goal, we need to: 

1. Automate the process of identifying resonances. 

2. Extend calculations to a large number of components, in order to investigate the 
assumptions to be made in going over to a stochastic version of the equations. 

3. Implement the stochastic version and couple it to the incident wave climate. 

In addition, the limitation of the present analytical theory to the case of waves 
on planar beach topographies is restrictive, and needs to be extended to the case 
of non-planar topographies such as the exponential profile of Ball (1967). It is also 
possible that the non-interaction of edge wave triads involving waves propagating the 
same direction, found here for waves on a planar beach, is an anomalous result that 
will not hold for arbitrary topographies. 

For the case with a net longshore current added to the system, we need to elaborate 
the process for numerically determining the eigenmodes for an arbitrary topography 
and longshore current distribution, and then repeat the steps outlined above. 
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Single triad - colinear case 
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Figure 6: Single triad with colinear components. No resulting interaction. 
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Figure 7:  Time series of modal wave amplitudes for colinear case:  Direct numerical 
simulation. 
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