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ANALYSIS OF SHORELINE BEHAVIOR ON SENDAI COAST BEFORE AND AFTER THE 
2011 TSUNAMI 

Hoang Cong Vo1, Yuta Mitobe1 and Hitoshi Tanaka1 

The earthquake and tsunami in 2011 caused serious damages on Sendai Coast, Miyagi Prefecture, Japan. Shoreline 

change characteristics for periods both before and after the tsunami are extracted from processing of aerial 

photographs together with conducting of Empirical Orthogonal Function (EOF) analysis. The evolution of shoreline at 

the Nanakita River mouth and the Natori River mouth areas both before and after the tsunami has been discussed. 

Shoreline change rates at both the river mouths reveal the recovery of morphology but in different aspect, the fast 

recovery at the Nanakita River mouth while very slow recovery at the Natori River mouth. The results of EOF 

analysis show that the dominant components of shoreline changes before and after the tsunami are different each 

other. The dominant component after the tsunami at the two river mouths is also different. The total contribution of 

the first and the second component is very high in the total contribution of all the components. The contribution of the 

first component after the tsunami is larger than the first component before the tsunami. The results also show the 

significant effect of the river mouth on the recovery of the morphology around. 
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INTRODUCTION  

Background 

A 9.0-magnitude earthquake hit off the east coast of Japan on March 11th, 2011. It triggered the 

powerful tsunami waves which battered Japanese Coast and propagated around the Pacific Ocean. In 

the coastal area along northeast part of Japan, this double disaster caused the widespread and severe 

damages to the infrastructure and significant changes on the coastal morphology. Before this occasion, 

the tsunami, which caused the close scale of damage, is the 2004 Indian Ocean tsunami. The significant 

changes and recovery process of the coastal and estuarine morphology of affected areas in Indonesia, 

Thailand and Sri Lanka were the topics of studies such as Liew et al. (2010) and Choowong et al. 

(2009). These studies investigate the damages and the recovery of coastal area after the tsunami based 

on the average resolution satellite images which were taken in every one year or longer. After the 2011 

tsunami, there have been studies on the damages and recovery process of morphology in Sendai Bay 

area such as Tanaka et al. (2012), Tappin et al. (2012) and Udo et al. (2012). According to these 

studies, the severe damages and subsequent recovery of morphology on Sendai Coast have been 

reported. On Sendai Coast, various kinds of damages were reported by Tanaka et al. (2012). The 

typical damages on this coast are the erosion of sandy beach, the disappearance of sand barriers in front 

the Nanakita River mouth and the Natori River mouth and the flushing of sand spits in front of these 

river mouths. Moreover, that study also investigated the subsequent recovery of morphology of the two 

river mouths mentioned above. After the tsunami, the recovery process of morphology at these river 

mouths took place in different ways; the quick recovery at the Nanakita River mouth and the slow 

recovery at the Natori River mouth can be observed. The evolution of morphology is also much 

different between before and after the tsunami. 

The recovery of morphology on Sendai Coast, especially at the two river mouth areas is very 

important for the coastal management. As mentioned above, only the subsequent recovery has been 

investigated hence it is needed to be study further in longer time period. Moreover, the understanding 

of the recovery process will be very useful for the preparation for similar disasters in future.  

This study investigates the recovery of morphology and its behavior at the Nanakita River mouth 

and the Natori River mouth from frequent aerial photography together with conducting Empirical 

Orthogonal Function (EOF) analysis. The evolution of morphology before the tsunami at these two 

areas is also investigated to reveal the aspects of morphology recovery before and after the tsunami. 

Study Area 

This study focuses on the Nanakita River mouth (Area 1A on the left side, Area 1B on the right 

side in Figure 1) and the Natori River mouth (Area 2) on Sendai Coast which is located in the eastern 

part of Sendai City, Miyagi Prefecture, Japan (Figure 1). Sendai Coast is approximately 12km in length 

stretching from Sendai Port at north to Yuriage Port at south. There is a canal named Teizan Canal 

connecting the Nanakita River mouth and the Natori River mouth. The direction of longshore sediment 

transport on this coast is from south to north.  
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The Nanakita River mouth is located about 1.8km south of Sendai Port. The length of this river is 

45km, the basin area is 229.1 km2 and the average river discharge is about 10m3/s. Total sediment 

supply from this river is about 2000m3/year. There is a jetty on the left side of the river mouth. Gamo 

Lagoon is also located adjacently on this side. 

Natori River mouth is located next to the Yuriage Port. The length of this river is about 55km and 

catchment area is about 939km2. Total sediment supply from this river is about 10000m3/year. There 

are two jetties at the river mouth area and Idoura Lagoon adjacent on the left side. 

Data Collection and Analysis 

Aerial photographs of the study area have been taken by airplane regularly in every one or two 

month since 1990 until now. This study utilizes the aerial photographs taken from March, 2009 until 

March, 2011 for the period before the tsunami and from June, 2011 until February 2014 for the period 

after the tsunami. In order to show more details on the damage of morphology induced by the tsunami, 

aerial photographs, which were taken by Geospatial Information Authority of Japan (GSI) on March 

12th, 2011 (1 day after the tsunami), have been utilized.  

 All of raw aerial photographs are geo-referenced to the World Geodetic System (WGS-84). The 

line, which is 2100 clockwise from the north, was taken as the baseline for shoreline position 

measurement. Shoreline positions are extracted in every 20m in longshore direction from aerial 

photographs. In order to eliminate the effect of tide, detected shoreline positions have been corrected 

with astronomical tide level in Sendai Port which was calculated by Japan Meteorological Agency and 

average beach slope of 0.11. 

 The technic of shoreline position detection and digitization and uncertainty of assessment have 

been discussed by Pradjoko and Tanaka (2012). 

RESULTS AND DISCUSSION 

Morphological change at the Nanakita River mouth 

 According to Pradjoko and Tanaka (2012), before the tsunami shoreline around the Nanakita River 

mouth area was in the dynamic equilibrium. The left side had more fluctuation than the right side. The 

morphological changes and subsequent recovery after the tsunami in this area were reported by Tanaka 

et al. (2012). In that study, the recovery of morphology in longer time period is introduced. However, 

in order to make it more clear, then some key points of the significant changes and subsequent recovery 

process are also reintroduced. Figure 2 shows the morphological changes around the Nanakita River 

mouth for the both periods before and after the tsunami. As can be recognized from Figure 2(a) and 

Figure 2(b), the tsunami caused the severe erosion of the sandy beach, the flushing of sand spit located 

Figure 1. Location map of study area 
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where )(),(),( xytxytxy s −= , ),( txys
is the distance from baseline to shoreline, (x)y  is the mean 

shoreline position, cn(t) and en(x) are the temporal and spatial eigenfunctions, respectively. Due to the 

severe erosion, just after the tsunami, shoreline at many places on Sendai Coast was discontinuous 

(Figure 2(b) and Figure 3(b)). Hence, the shoreline on June 8th, 2011, which almost recovered to the 

continuous status, was taken as the first shoreline data input for EOF analysis. Moreover, in order to 

obtain the characteristics of the overall recovery process of shoreline on entire of the coast, about 200m 

of shoreline on the right side of the Nanakita River mouth and about 200m of shoreline on the left side 

of the Natori River mouth, which involved into the strong fluctuation regarding to the recovery at 

breaching points or sand spit intrusion into the river mouth, etc., were not included in the EOF analysis. 

EOF analysis of the Nanakita River mouth 

Before the tsunami (Area 1) 

Figure 4 shows the spatial eigenfunctions of the first two components at the Nanakita River mouth 

(Area 1A and Area 1B) both the periods before and after the tsunami. The spatial eigenfunctions of the 

first component on both areas before the tsunami are almost constant in the longshore direction (Figure 

4). The temporal eigenfunctions of the first component on both areas, which are shown in Figure 5, 

fluctuate up and down around 0. Moreover, the combination of the first temporal and the spatial 

eigenfunctions, which is presented in Figure 6(a), has same trend of variation on both sides. From the 

above reasons, it can be said that, the first component of shoreline variability on both areas around the 

Nanakita River mouth is related to the cross-shore movement. The contribution of this component in 

Area 1A and Area 1B are 68% and 53%, respectively.  

The value of spatial eigenfunctions of the second component on both areas have the opposite sign 

(+,-) on the close and far side of the river mouth (Figure 4). The value of temporal eigenfunction of 

these areas is close in the period from 740days to 430days before the tsunami. After that, temporal 

eigenfunction in Area 1A fluctuates stronger than in Area 1B. The combination of the temporal 

 

Figure 4. Spatial eigenfunctions of the first two components at the Nanakita River mouth both before and 
after the tsunami  

Figure 5. Temporal eigenfunctions of the first two components at the Nanakita River mouth before the 
tsunami 
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eigenfunction and spatial eigenfunction show that shoreline has small amplitude of variation. Hence, 

the second component can be related to the longshore sediment transport and reflects the effect of river 

mouth. The contribution of this component in Area 1A and Area 1B are 15% and 30%, respectively. 

The total contribution of the first and the second component on each side is higher than 80%, so this 

study analyzes the dominant component up to the second component only. 

After the tsunami (Area 1) 

The spatial eigenfunction of the first component of Area 1A after the tsunami is almost constant 

(Figure 4). On the other hand, the first component of Area 1B has higher value near the river mouth 

and is gradually decreasing to right side. Value of temporal eigenfunctions of the first component on 

both areas are increasing after the tsunami up to the time of about 670days after the tsunami. After that, 

they are almost constant (Figure 7). The tendency of the temporal eigenfunctions of the first component 

of two areas is similar. The value of the combination of the temporal eigenfunction and spatial 

eigenfunction is increasing gradually on both sides. Hence, the first component of on Area 1A related 

to the cross-shoreline movement or in other word is the recovery process of shoreline where severely 

damaged by the tsunami. While in Area 1B, it relates to longshore sediment transport and recovery 

process is strongly affected by the river mouth. The contribution of the first component of Area 1A and 

Area 1B are 86% and 83%, respectively. These contribution values are much higher than the 

contribution values of the first component before the tsunami. 

 

Figure 6. Combination of temporal eigenfunction and spatial eigenfunction of the Nanakita River mouth 
before the tsunami 
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The value of spatial eigenfunction of the second component in Area 1A is very high value at the 

left end of the area; after that it decreases up to the point x of about 350m (Figure 4); after that, it 

increases and get stable around 0. The area on most left and the area in the middle are corresponding to 

the place of severe erosion and the place of opening new river mouth after the completed closure of the 

Nanakita River entrance in September, 2011, respectively.  In Area 1B, the spatial eigenfunction of the 

second component has high value at the area adjacent to the river mouth, and decreasing after that 

(Figure 4). The temporal eigenfunctions of the second component on both areas are increasing the early 

 

Figure 7. Temporal eigenfunctions of the first two components at the Nanakita River mouth after the tsunami 

Figure 8. Combination of temporal eigenfunction and spatial eigenfunction of the Nanakita River mouth after 
the tsunami 
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stage, after that keep constant around the 0 (Figure 7). In Area 1A, the value of combination of 

temporal eigenfunction and spatial eigenfunction is low on the most left area and is high at the place of 

new river mouth opening and near the river mouth. In Area 1B, this value is high in the area adjacent to 

the river mouth where the shoreline was strongly evolved regarding to the sand spit intrusion into the 

river mouth and the erosion propagation to the south. In addition, these values are high in the early 

stage of the recovery process. Hence, it can be said that, the second component after the tsunami is 

related to the recovery of morphology in the early state at places where the morphology was severely 

damaged induced by the tsunami. The contribution of the second component in Area 1A and Area 1B 

are 13% and 7.3%. 

EOF analysis of the Natori River mouth 

Before the tsunami (Area 2) 

The value of spatial eigenfunction of the first component at Area 2 before the tsunami is almost 

constant in the longshore direction (Figure 9). While the temporal eigenfunction fluctuates up and 

down around 0. The combination of the temporal eigenfunction and spatial eigenfunction also shows 

the fluctuation up and down of the shoreline. Hence, the first component at Area 2 is similar to the first 

component at Area 1. It relates to the cross-shore movement. The contribution of this component is 

66%. The first dominant component in this area is same with the one in Area 1A and Area 1B. The 

contribution of the first component is almost same between Area 1A, Area 1B and Area 2. 

The value of spatial eigenfunction of the second component is almost constant in the area far from 

the river mouth (Figure 9). It increases from the middle area to the river mouth. The value of temporal 

eigenfunction fluctuates up and down and also almost opposite with the first component. The 

combination of temporal eigenfunction and spatial eigenfunction show the shoreline far away from the 

river mouth fluctuates up and down. However at the area close to the river mouth, the evolution of 

shoreline is different. In this case, the second component can be related to the cross-shore movement 

with strongly effect of the river mouth, jetty or breakwater. Its contribution is about 18%. 

 

Figure 9. Spatial eigenfunctions of the first two components at the Natori River mouth both before and after 
the tsunami 
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Figure 10. Temporal eigenfunctions of the first two components at the Natori River mouth before the tsunami 



 COASTAL ENGINEERING 2014 

 

12

After the tsunami (Area 2) 

The value of spatial eigenfunction of the first component after the tsunami is completely different 

with the first component before the tsunami. However, its tendency is similar to the second component 

before the tsunami (Figure 9).  The value of temporal eigenfunction decreases from just after the 

tsunami up to the time of about 400days. After that, it is almost constant (Figure 12). The combination 

of temporal eigenfunction and spatial eigenfunction is increasing but only at the area far away from the 

river mouth. On the other hand, at the area adjacent to the river mouth, that value is decreasing (Figure 

13). Hence, the first component can be related to the cross-shore movement, the slow recovery of the 

area far from the river mouth and the retreat at the area adjacent to the river mouth due to the sand spit 

intrusion into river mouth. The contribution of this component is 77%. 

 The fluctuation of spatial eigenfunction of the second component is corresponding to shoreline 

positions in June 2011 (3 months after the tsunami). Its temporal eigenfunction is almost constant and 

fluctuation around 0, only a small changing in the early stage after the tsunami (Figure 12). The 

changing of the temporal eigenfunction and the spatial eigenfunction shows the strong evolution of 

shoreline is along the area and in the early stage of the after the tsunami (Figure 13). Hence, the second 

component can be related to the beach smoothing process and the recovery process in the early stage. 

This is same with the second component at area 1A. The contribution of this component is 7.3%. 
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CONCLUSIONS 

 

This study has investigated the behavior of morphology at the Nanakita River mouth and the Natori 

River mouth on Sendai Coast both periods before and after the 2011 tsunami through aerial photograph 

and Empirical Orthogonal Function (EOF) analysis. The following conclusions have been made. 

• The morphology of Nanakita River mouth and Natori River mouth on Sendai Coast was severely 

damaged by the 2011 tsunami. The recovery took place after the tsunami. Shoreline around the 

Nanakita River mouth has been moving advance with high rate. It has also been moving advance 
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Figure 13. Combination of temporal eigenfunction and spatial eigenfunction of the first two 
components at the Natori River mouth after the tsunami 
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at the Natori River mouth but lower rate. Shoreline at both river mouth areas has not yet reached 

the position before the tsunami.   

• The serious erosion caused by the tsunami has made the difference of dominant components of 

shoreline change between before and after the tsunami. The total contribution of the first and 

second components is about 85% up to 95% of the total contribution of all components. The 

contribution of the first component after the tsunami is larger than the contribution before the 

tsunami. They are related to the recovery process of the areas which were severely damaged. 

• Two river mouths have strongly effect on the recovery process of the morphology in the around 

areas. 
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