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ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS 
 

Karsten Lindegård Jensen1, B. Mutlu Sumer1, Giovanna Vittori2 and Paolo Blondeaux2 
 
The pressure field in an oscillatory boundary layer is obtained by means of direct numerical simulations (DNS). The 
vertical pressure gradient is treated as any other turbulence quantity and its statistical properties are calculated from 
the DNS data. Moreover, a criterion involving the vertical pressure gradient is used to detect spots. The large 
fluctuations of the vertical pressure gradient, which take place in the turbulent flow, have significant implications for 
sediment transport. 
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INTRODUCTION 
Wave boundary layers have been studied extensively over the past decades. The studies cover the entire 
range of flow regimes: laminar, transitional and turbulent regimes. Observations show that, in the 
transitional regime, turbulence first emerges in isolated areas where the flow “bursts” with violent 
oscillations (Carstensen, Sumer and Fredsøe, 2010). These areas, which are called “turbulent spots”, 
and they grow in time, and once they merge, the flow becomes fully turbulent. Carstensen et al’s. 
(2010) work was later extended to the case of solitary wave boundary layers (Sumer et al, 2010) and 
wave boundary layers over a rough bed (Carstensen, Sumer and Fredsøe, 2012).  
Mazzuoli, Vittori and Blondeaux (2011) have recently simulated the dynamics of turbulent spots in 
wave boundary layers by means of Direct Numerical Simulation (DNS) and reproduced the 
experimental results by Carstensen et al. (2010) to complement their results. 
In the present study the same DNS data as in Test 1 of Mazzuoli et al. (2011) are examined in terms of 
vertical pressure gradient, presumably a new quantity in the analysis of turbulent wave boundary 
layers. 
This new approach and the interpretation of the DNS results shed a new light onto the laminar-to-
turbulent transition in wave boundary layers and the dynamics of sediment grains in the transitional 
regime.  
 
NUMERICAL MODEL 
Applying the linear Stokes wave theory, the orbital motion of the water particles near the seabed turn 
out to be parallel to it. Introducing a Cartesian coordinate system (𝑥1∗, 𝑥2∗, 𝑥3∗), such that 𝑥1∗ is in the 
direction of the wave propagation, 𝑥2∗ is vertical and 𝑥3∗ points in the spanwise direction (see Fig. 1), the 
flow in the boundary layer can be studied as an oscillatory flow driven by a pressure gradient given by 
 
 𝜕𝑃∗

𝜕𝑥1∗
= −𝜌∗𝑈0𝑚∗ 𝜔∗ 𝑠𝑖𝑛(𝜔∗𝑡∗) ;    

𝜕𝑃∗

𝜕𝑥2∗
= 0;   

𝜕𝑃∗

𝜕𝑥3∗
= 0 (1) 

   
where 𝑈om∗  and 𝜔∗ = 2𝜋/𝑇∗ are the amplitude and the angular frequency of the fluid oscillations and 
𝑇∗ is the period. As in Blondeaux and Vittori (1994), Costamagna et al. (2003) and Mazzuoli et al. 
(2011), the bottom profile has a small waviness in the 𝑥1∗- and 𝑥3∗-directions, and the vertical coordinate 
𝑥2∗ is measured from the mean wall (or bed) level. The waviness of the bottom profile 𝜂∗ is generated 
by the superimposition of sinusoidal components and is described by   
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𝑥2∗ = 𝜖∗𝜂(𝑥1∗, 𝑥3∗) = 𝜖∗�𝑎𝑛 𝑐𝑜𝑠(𝛼𝑛∗𝑥1∗ + 𝛾𝑛∗𝑥3∗ + 𝜙𝑛)
𝑁

𝑛=1

 (2) 

   
where 𝜖∗𝑎𝑛 is the amplitude of the nth-harmonic component. In the present simulation 𝜖∗ is equal to 
0.005𝛿∗, (𝛿∗ being the Stokes length = �2𝜈∗/𝜔∗  and 𝜈∗ the kinematic viscosity of sea water). The 
components of the waviness are characterized by wave numbers 𝛼𝑛∗  and 𝛾𝑛∗ in the 𝑥1∗ and 𝑥3∗ directions, 
respectively, and a phase shift 𝜙𝑛. Vittori and Verzicco (1998) investigated the effect of the wall 
waviness and found that the wall waviness is necessary to trigger transition to the intermittently 
turbulent regime, even if its amplitude is so small that it has no significant influence on turbulence 
characteristics and the wall can be considered smooth from a macroscopic point of view. 

 
Figure 1. Definition. The outer flow is driven by a pressure gradient in the streamwise direction.  
 

The non-dimensional form of the Navier-Stokes equation reads 
 
 𝜕𝑢𝑖

𝜕𝑡
+
𝑅𝛿
2
𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
𝑅𝛿
2
𝜕𝑝
𝜕𝑥𝑖

− 𝛿𝑖1 𝑠𝑖𝑛(𝑡) +
1
2

 𝜕2𝑢𝑖
𝜕𝑥𝑘𝜕𝑥𝑘

       𝑓𝑜𝑟 𝑖 = 1, 2, 3  (3) 

   
and continuity equation becomes 
 
 𝜕𝑢𝑖

𝜕𝑥𝑖
= 0      for 𝑖 = 1, 2, 3  (4) 

   
where the following non-dimensional variables are used  
 
 𝑡 = 𝑡∗𝜔∗;      (𝑥1, 𝑥2, 𝑥3) = (𝑥1∗, 𝑥2∗, 𝑥3∗)

𝛿∗

𝑝∗ = 𝑝∗
𝜌∗𝑈0𝑚∗2

;       (𝑢1,𝑢2,𝑢3) = (𝑢1∗,𝑢2∗ ,𝑢3∗)
𝑈0𝑚∗

 (5) 
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where 𝑡∗ is the time, 𝑝∗ is the pressure, 𝑢𝑖∗ is the velocity component in the 𝑥𝑖∗ direction, 𝑅𝛿 =
𝑈0𝑚∗ 𝛿∗/𝜈∗ is the Reynolds number, based on the Stokes length 𝛿∗.   
Eqs. 3 and 4 are solved numerically in a computational domain, the size of which is 𝐿𝑥1, 𝐿𝑥2 and 𝐿𝑥3 in 
the streamwise, the vertical and the spanwise directions, respectively (see Table 1). At the bottom, the 
no-slip condition is enforced. Since the wall waviness is assumed to be much smaller than the thickness 
of the laminar boundary layer (𝜖 = 𝜖∗/𝛿∗ ≪ 1), the no-slip boundary condition is expanded up to 
second order in the variable 𝜖 and is forced at 𝑥2 = 0 (Mazzuoli et al., 2011). Since the accuracy of the 
numerical method employed to solve the Navier Stokes equation is of second order and 𝜖 is smaller 
than the size of the first computational grid in the vertical direction, there is consistency between the 
numerical scheme and boundary condition (Vittori and Verzicco, 1998).  
At the upper boundary (𝑥2  = 𝐿𝑥2) a symmetry condition is applied which is equivalent to force the 
vanishing of the tangential stresses far from the bed. Finally periodicity is enforced along the 𝑥1∗- and 
𝑥3∗- axes, because the turbulent flow is assumed to be homogeneous along these directions. 
The mesh is uniform in the 𝑥1 and 𝑥3 directions and non-uniform in the 𝑥2 direction so that the grid 
points are clustered near the bed (minimum grid size is 0.16𝛿∗ and maximum grid size is 0.59𝛿∗). The 
method uses second order finite difference approximations for the spatial derivatives and the fraction-
step method for the time derivatives in the Navier-Stokes equation. For a more detailed description of 
the numerical procedure, see Kim and Moin (1985), Orlandi (1989), Vittori and Verzicco (1998) and 
Costamagna et al. (2003).    
 

Table 1. Numerical parameters for the test. Here 𝜶𝒏 = 𝜶𝒏∗ 𝜹∗ and 𝜸𝒏 = 𝜸𝒏∗ 𝜹∗. 
test R𝛅 Re 𝑳𝐱𝟏 𝑳𝐱𝟐 𝑳𝐱𝟑 𝒏𝟏 𝒏𝟐 𝒏𝟑 

1 948 𝟒.𝟓 ⋅ 𝟏𝟎𝟓 213.6 25.13 75.40 541 65 385 
test 𝒂𝟐 𝒂𝟐 𝜶𝟏 𝜶𝟐 𝜸𝟏 𝜸𝟐 𝝓𝟏 𝝓𝟐 
1 1 0.1 0.5 0 0 1 0 0 

 
The test conditions and the properties of the numerical mesh are given in Table 1. In Table 1 Re =
𝑈0𝑚∗ 𝑎∗/𝜈∗ , where 𝑎∗ = 𝑈0𝑚∗ 𝑇∗/(2𝜋), 𝑛1,𝑛2 and 𝑛3 are the number of grid points in streamwise, 
vertical and spanwise direction, respectively.  
The computational domain should be large enough to contain the largest coherent vortex structure that 
occurs in the boundary layer and, simultaneously the grid size should be small enough to describe the 
smallest turbulent eddies. To secure these conditions a fast Fourier transform of the velocity field has 
been performed and it has been verified that the amplitude of the spectral components with the largest 
and smallest wave numbers are smaller than a few percent of the maximum amplitude.  
 
Turbulent spots. Laminar-to-turbulent transition  
Turbulent spots are isolated areas in an otherwise laminar flow where the flow “bursts” into violent 
random oscillations, first observed by Carstensen et al. (2010) for the wave boundary layers. These 
observations were complemented by the DNS simulations of turbulent spots in oscillatory boundary 
layers by Mazzuoli et al. (2011) and Mazzuoli (2013). 
Turbulent spots can be visualized in CFD experiments by various criteria involving “traditional” 
turbulence quantities such as turbulent kinetic energy production (TKEP (−𝑢𝚤′𝑢𝚥′������𝜕𝑢𝐼� /𝜕𝑥𝑗)), turbulent 
kinetic energy (TKE (1/2𝑢𝚤′𝑢𝚤′������)), wall-shear-stress fluctuations, or velocity fluctuations (an overbar 
denotes the ensemble average). Fig. 2a displays the contour plot of the TKEP at a distance 𝑥2 = 0.24 
from the wall at 𝜔𝑡 = 45 ° (the flow being from left to right) and shows that, turbulent spots can be 
visualized by the larger values of TKEP. Fig. 2a is accompanied by another contour plot (Fig. 2b), 
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namely the contour plot of the quantity −𝜕𝑝/𝜕𝑥2, i.e. the pressure gradient in the direction 
perpendicular to the wall at the same 𝑥2 location and phase as in Fig. 2a: 
 
 

−
𝜕𝑝
𝑑𝑥2

= −
𝛿∗

𝜌∗𝑈0m∗2
𝜕𝑝∗ 
𝜕𝑥2∗

 (6) 

   
Note that the vertical distance 𝑥2 = 0.24 (at which these contour plots are given) is the level closest to 
the wall where the vertical pressure gradient can be resolved in the present DNS simulation.  

 
Figure 2.Turbulent spots at ωt = 45˚ visualised using (a): the turbulent kinetic energy production (TKEP) as 
Mazzuoli et al. (2011). (b): the vertical pressure gradient.  The flow is from left to right. Qualitatively the two 
criteria (namely, the vertical pressure gradient and the turbulent kinetic energy production (TKEP)) are 
capable of detecting the same areas where the flow becomes turbulent . 
 
We also note that, for convenience, the minus sign is added to 𝜕𝑝/𝜕𝑥2 so that a positive value of 
(−𝜕𝑝/𝜕𝑥2) indicates an upward-directed force on fluid particles. As shown by Fig. 2, the turbulent 
spots, visualized by the vertical pressure gradient (Fig. 2b), are strikingly similar to those visualized by 
the TKEP (Fig. 2a).  
The DNS simulation indicates that turbulent fluctuations appear simultaneously at multiple locations in 
the (𝑥,1 𝑥3)-plane. When they first occur, they are rapidly damped. Later, however, around 𝜔𝑡 = 20°, 
they begin to remain sustained, and turbulent spots emerge. Then, the spots grow in size until they 
merge whereby the entire near bed region becomes turbulent at 𝜔𝑡 = 65°. These DNS simulations are 
in qualitative and to some degree quantitative agreement with the measurements of Jensen et al. (1989) 
and Carstensen et al. (2010) although the DNS results imply an early transition by O(30 − 40°). This 
might be related to (a) the difficult and possible subjective judgments in defining the transition limit in 
the experiments, (b) the higher level of the disturbances in the experimental apparatus compared to that 
of the numerical simulations.  
  
Statistical analysis of the vertical pressure gradient 
The analysis of the previous section clearly shows that the quantity (−𝜕p/𝜕x2) can describe the 
laminar-to-turbulent transition rather well, indeed as good as, for example, the turbulent kinetic energy 
production. This result stimulated the study of the statistical properties of the vertical pressure gradient, 
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(−𝜕p/𝜕x2). Presently the the mean value and the standard deviation are calculated from the data 
obtained by means of the DNS results. The analysis is presented in three steps: (1) Bed shear stress; (2) 
Turbulence quantities; and (3) Vertical pressure gradient. The first two steps are included in the 
analysis as they prove to be useful for the analysis of the pressure gradient, i.e. the focus of the present 
study 
.  
Bed shear stress 
Fig. 3 displays the time variation of the phase resolved mean bed shear stress 𝜏0�  (averaged over the 
entire (𝑥1, 𝑥3)-plane) where 𝜏∗ =  𝜇∗ 𝜕𝑢1∗/𝜕𝑥2∗, and 𝜏0 is its value at 𝑥2∗ = 0 
 
 𝜏0∗� 𝛿∗

𝜇∗𝑈0𝑚∗
=  𝜏0� =

𝜕𝑢3
𝜕𝑥2

�
𝑥2=0

 (7) 

   
As seen from Fig. 3, the bed shear stress leads the free stream by a phase difference of 20˚. This agrees 
well with the experimental data reported in Jensen et al. (1989) and Carstensen et al. (2010).  
The maximum value of the bed shear stress obtained in the present simulation is 𝜏0� = 1.9. Using this 
value and considering 𝑇∗ = 9.72s, the wave friction factor defined by  
 
 

𝑓𝑤 = 2
𝜏0̅𝑚∗

𝜌∗𝑈0𝑚∗2
 (8) 

   
is found to be 𝑓𝑤 = 0.075. The latter value matches the results from Spalart and Baldwin (1987), but 
higher than the experimental data from Jensen et al.’s (1989), namely 𝑓𝑤 ≅ 0.004.  
 

 
Figure 3. a: The normalized free stream velocity. b: The normalized bed shear in terms of bed friction 
velocity.  
 

Turbulence quantities 
Figs. 4 and 5 show the time development of the vertical profiles of different turbulence quantities, 

namely �𝑢𝚤′2�����
1/2

 (𝑖 = 1, 2, 3) and 𝑢1′ 𝑢2′������ where 𝑢𝑖′ is the non-dimensional fluctuating component of the 
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velocity 𝑢𝑖. A direct comparison of the present numerical results with the results of Spalart and 
Baldwin (1987) and Jensen et al. (1989) reveals a fair agreement even though no figure of this 
comparison is presently shown for the sake of space.  
The time development of the turbulence quantities is shown in Fig. 4 by showing four selected phase 
values, namely 𝜔𝑡 =  0°, 45°, 90° and 135°. At the reversal of the free stream flow (𝜔𝑡 =  0°), 
turbulence has spread over a substantial portion of the boundary layer, up to a height of 𝑥2 ≅ 14. By 
the time the phase reaches 𝜔𝑡 =  45° (Panel b), this turbulence is dissipating, and it is only close to the 
bed that turbulence production takes place again and new a peak in the r.m.s. values of 𝑢1′  appears.  As 
the phase value increases further (𝜔𝑡 =  90°, Panel c) the buildup of turbulence continues in all three 
velocity components. Finally, at 𝜔𝑡 =  135° (Panel d) the turbulence production stops and turbulence 
spreads out far from the wall up to 𝑥2 ≅ 12. This continuous buildup of turbulence is due to diffusion 
effects that make the boundary layer thickness to grow during the entire wave cycle until a new 
boundary layer starts to form near bed at flow reversal (Jensen et al. 1989).  

 
Figure 4. Time evolution of turbulence quantities. R.m.s. values of 𝒖𝒊′ for selected phases. ▬▬ 𝒖𝟏′ , ― ― 𝒖𝟐′  and 
―∙― 𝒖𝟑′  
 
A similar time development is found for the non-dimensional Reynolds stresses which are shown in 
Fig. 5. In Fig. 5a, the Reynolds stresses from the previous period are not yet dissipated. The negative 
values, which are present in Fig. 5a, are due to the effect of the flow reversal. In Fig. 5b, the turbulence 
produced during the previous half cycle is dissipating and a new buildup starts near the bed. Panels Fig. 
5c and Fig. 5d show that the buildup continues until the flow reverses, in exactly the same fashion as in 
Fig. 4. The results presented in Figs. 4 and 5 are in full agreement with Jensen et al.’s (1989) 
measurements. Furthermore, although not shown here for the sake of space, the present results for 
𝜔𝑡 = 90° are in agreement with the steady boundary layer data. This is an expected result, as the 
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oscillatory boundary layer behaves much the same as the steady boundary layer since at this phase the 
streamwise pressure gradient driving the oscillatory boundary layer becomes rather small (and indeed it 
vanishes at 𝜔𝑡 = 90°). 
 

 
Figure 5. Time evolution of Reynolds stresses 𝒖𝟏′ 𝒖𝟐′������� for selected phases. 
 
Vertical pressure gradient 
Fig. 6 shows the time development of the non-dimensional vertical profiles of the vertical pressure 
gradient 𝜕𝑝/𝜕𝑥2���������� for the same phases as in Figs. 4 and 5. Similar to the turbulence quantities in Figs. 4 
and 5, the pressure gradient is normalized by the outer flow parameters (Eq. 6), i.e. the maximum free 
stream velocity and the density of the fluid. Moreover, the average (overbar) is taken over the entire 
plane (𝑥1, 𝑥3)-plane, as for the other turbulence quantities.   
Two sets of data are plotted in Fig. 6. The first one (the solid lines in the figure) represents the 
conditional averaged vertical pressure gradient corresponding to –𝜕𝑝/𝜕𝑥2 > 0 (the upward-directed 
pressure gradient), while the second set of data (the broken lines in the figure) represents the 
conditional averaged vertical pressure gradient corresponding to –𝜕𝑝/𝜕𝑥2 < 0 (the downward-directed 
pressure gradient).  
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Figure 6. Conditional averaged value of −𝝏𝒑/𝝏𝒙𝟐 for selected phase values. ▬▬ (−𝝏𝒑/𝝏𝒙𝟐 > 𝟎)  and ― ― 
(−𝝏𝒑/𝝏𝒙𝟐 < 𝟎). 
 
The condition described in the previous paragraph implies that, for upward directed pressure gradients, 
the fluid particles with zero vertical momentum tend to move upward, and vice versa. However for 
fluid particles with finite vertical momentum, first the aforementioned vertical pressure gradient is used 
to “consume” the momentum of the fluid particles, before the particles begin to move in the direction 
dictated by the vertical pressure gradient. 
First of all, Fig. 6 shows that, regardless of the phase value, the vertical pressure gradient −𝜕p/ ∂x2������������ 
appears to be largest very near the bed, in the region associated to the generation of turbulence, 
𝑥2 = O(1). Moreover, Fig. 6 shows that −𝜕p/𝜕x2������������  increases tremendously with increasing phase, 
attaining very large values a 𝜔𝑡 = 90° before it begins to fall off. A third observation from Fig. 6 is 
that the upward-directed pressure gradient appears to be larger than the downward-directed pressure 
gradient, and this appears to be the case throughout the phase space. It is likely that strong vertical 
pressure gradients are introduced by turbulent coherent vortex structures and our future work will be 
devoted to verify this conjecture 
At this stage, it is interesting to compare the time development of the vertical pressure gradient (Fig. 6) 
with the time development of the other turbulence quantities (Figs. 4 and 5). When inspected closely, 
Figs 4 and 5 show that turbulence is generated in a region close to the wall where 𝑥2 = O(1). Then, 
turbulence is constantly fed into the main body of the flow, by its spreading across the boundary layer 
up to heights as large as 𝑥2 ≅ 15. This “diffusion” of turbulence across the boundary layer is rather 
clear, even at 𝜔𝑡 = 0° when there is a substantial amount of turbulence left from the previous half 
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cycle (Fig. 4, Panel a), as also revealed by Jensen’s work (1989). This behaviour cannot be observed in 
the time development of the pressure-gradient (Fig. 6), because the dynamics of the pressure gradient is 
not controlled by diffusive effects. 
The present results reveal that the chain of events occurs as described in the following. First, the 
vertical pressure gradient is generated (practically momentarily) near the bed, and this causes fluid 
motion in the vertical direction (upwards or downwards depending on the direction of the pressure 
gradient). This is essentially the turbulence, and it is known that the turbulent kinetic energy generated 
this way (represented by 𝑘 = 𝑢𝚤𝑢𝚤�����/2 a scalar quantity) is governed by a diffusion process, revealed by 
Fig. 4. 

 
Figure 7. Standard deviation of the conditional averaged value of −𝝏𝒑/𝝏𝒙𝟐 for selected phase values. ▬▬ 
𝝈(−𝝏𝒑/𝝏𝒙𝟐 > 0) and ― ― 𝝈(−𝝏𝒑/𝝏𝒙𝟐 < 0). 
 
The standard deviation 𝜎 for the conditional averaged pressure gradients is shown in Fig. 7 where  𝜎 is 
defined by  
 
 

𝜎
�− 𝜕𝑝
𝜕𝑥2

�
=  ���−

𝜕𝑝
𝜕𝑥2

� − �−
𝜕𝑝
𝜕𝑥2

��������
��

2�����������������������������
 (9) 

   
Averaging (overbar) is, again, over the entire (𝑥1, 𝑥3)-plane. In Fig. 7, the solid lines represent the 
condition −𝜕𝑝/𝜕𝑥2 > 0 and the broken lines −𝜕𝑝/𝜕𝑥2 < 0. Two observations can be made. First the 
magnitude for the upward directed gradient (−𝜕𝑝/𝜕𝑥2> 0) is larger than the magnitude of the 
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downward directed pressure gradient (−𝜕𝑝/𝜕𝑥2< 0). Secondly, the time development over the phase of 
the conditional averaged gradients in Fig. 6 is similar to that observed for the standard deviation. 
Moreover, it may also be noted that the standard deviation values are as large as the mean values (Figs. 
6 and 7).   
 
IMPLICATION FOR SEDIMENT TRANSPORT 
If the bottom was made up of cohesionless sediments, the vertical pressure gradient would generate a 
force on the sediments moving near the bed. To infer the dynamics of the sediment grains from the 
computed flow field, since the simulation is carried out for a smooth bed, the bed should behave as a 
hydraulic smooth bed, even when sediment grains are present. Therefore, there is a limitation for the 
grain size, 𝑑∗, which can be considered. In particular the Reynolds grain number should be small, i.e. 
 
 𝑑∗𝑈𝑓𝑚∗

𝜈∗
< O(10) (10) 

   
where 𝑈𝑓𝑚∗  is the shear velocity.  
An estimate of the stabilizing force on the sediment water mixture is submerged weight 𝑊 (per unit 
volume) of the mixture 
 
 

𝑊 = (s − 1)(1 − n) 
(11) 
 

where 𝑠 is the specific gravity and 𝑛 the porosity. On the other hand the agitating force 𝐹 (per unit 
volume) on the sediment-water mixtures, due to the vertical pressure gradient, can be estimated by 
means of    
 
 

𝐹 = −
𝜕 �𝑝

∗

𝛾∗�

𝜕𝑥2∗
 (12) 

   
where 𝛾∗ = 𝜌∗𝑔∗, 𝜌∗ being the density of water and 𝑔∗ the acceleration due to gravity. Assuming that 
other forces (drag and added mass forces) do not affect the sediment-water-mixture dynamics, the 
contribution from the vertical pressure gradient compared to the total force needed to move the 
sediment water mixture. It follows that: a) if the submerged weight is larger than the agitating forces 
(𝑊 > 𝐹), the sediment do not move in the vertical direction. b) if the submerged weight is smaller than 
the agitating force (𝑊 < 𝐹), the sediment moves in the vertical direction. Table 2 lists the values of the 
parameters for selected typical wave periods, and the associated pressure gradients at the bed based on 
the mean values evaluated at 𝜔𝑡 = 90° from Fig. 6c and from Eq. 11 (𝑠∗ = 2.65 and 𝑛∗ = 0.4 which 
are typical values for sediment). The grain size in table 2 is selected such that it satisfies Eq. 10.  
 
Table 2. Typical values of wave periods and the magnitude of the vertical pressure gradient at 𝝎𝒕 = 𝟗𝟎°. 
Shields parameter, 𝜽 = 𝑼𝒇𝒎

∗𝟐 /(𝒈∗(𝒔∗ − 𝟏)𝒅∗).  

𝑻∗ [s] 𝒅∗ [mm] 𝒅∗𝑼𝒇𝒎
∗

𝝂∗
[−] 𝜽 [−] 𝑭 [−] 𝑭 

𝑾
 [−] 

5 0.22 10 0.60 0.48 0.48 
7.5 0.22 8 0.40 0.26 0.26 
10 0.22 7 0.20 0.17 0.17 

12.5 0.22 6 0.24 0.12 0.12 
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As listed in Table 2, the sediment size of 0.22 mm (corresponding to medium sand) fulfils the 
requirement for the smooth bed. Moreover, the Shields parameter is calculated to ensure that all the 
conditions lead to sediment transport, although the largest period is close to the incipient sediment 
motion. The vertical pressure gradient is approximated by its average value over the height 𝑥�2∗ equal to 
𝑑∗, and such that 𝑥�2+ = 𝑥2∗𝑈fm∗ /𝜈∗ is smaller than 10. Taking into account that 𝑈fm∗ /𝜈∗ = �𝜏0̅m𝑈0m∗ /𝜈∗, 
it follows that 𝑥�2 = 𝑥�2∗/𝛿∗ is smaller than 0.25. The agitation-force-to-weight ratio 𝐹/𝑊 is based on 
the mean value of (−𝜕𝑝/𝜕𝑥2) picked up from Fig. 6. However, the instantaneous value of the latter can 
be as much as twice the mean value, or even larger. Therefore, the 𝐹/𝑊 ratio in such cases may even 
exceed unity, implying that even the pressure gradient alone can suspend the sediment grains from the 
bed.  
 
CONCLUSIONS 
1. Turbulent spots can be detected by a criterion involving the strength of the vertical pressure 

gradient near the bed.  
2. The vertical pressure gradient is treated as a turbulence quantity, and classic statistical properties 

(the mean and the standard deviation) are calculated with conditional averages (depending on 
whether the gradient is upward or downward directed). 

3. The results show that the magnitude of the upward directed conditional averaged pressure gradient 
is larger than twice the magnitude of the downward directed one.  

4. The time scale associated with the fluctuations of the pressure gradient is significantly smaller than 
that of the velocity fluctuations. 
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