TSUNAMI PRESSURE ON STRUCTURES DUE TO TSUNAMI INUNDATION FLOW

Tsutomu Sakakiyama'

Pressure profiles acting on walls of 2D and 3D structures due to tsunami inundation flow were discussed. Mech-
anism of the tsunami pressure acting on these different types of structures was explained. Due to the water
damming up in front of the 2D vertical wall, the maximum inundation depth is higher than that on wall of 3D
structure when the Froude number is less than 2.8. The improved formula based on that by Asakura et al. (2002)
was proposed to estimate the maximum inundation depth on 2D vertical wall as a linear function of the Froude
number. Experimental results show the maximum inundation depth on the wall of 3D structure is evaluated from
the energy conservation law for steady flow. Inundation depth, velocity and resultant Froude number of tsunami
were also investigated with numerical simulation results. The effects of the bottom roughness on the inundation
flow of tsunami is presented.
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INTRODUCTIONS

After the tsunami disaster due to the 2011 off the Pacific coast of Tohoku Earthquake, the design of
tsunami evacuation buildings and protective walls in nuclear power plants is a matter of greater interest
to us.

When considering a tsunami inundation flow, the maximum inundation depth on the wall of the
structures is a critical factor and also a pressure profile is necessary to be evaluated.

Asakura et al.(2002) already proposed the experimental formula to estimate the maximum inunda-
tion depth as a function of the Froude number. However, their formula was based on experiments using
both 2D and 3D structures and the data scatters ranging from -50% to +50%.

The guideline on tsunami evacuation buildings was issued by the Cabinet Office of Japan in
2005(Cabinet Office, Government of Japan, 2005). According to the guideline, the maximum inun-
dation depth on a wall of structure is three times the maximum inundation depth without structures.
The pressure profile on the wall is given by that of the hydrostatic pressure.

After the 2011 Tohoku-Oki tsunami disaster, that guideline was reviewed and the new document
was released (NILIM, 2012). Still this official guideline gives the maximum inundation depth on struc-
tures as the function of the inundation depth without structures, not considering the effect of the velocity
of the inundation flow. Guidelines or standards for design are usually simple. However, they should
include basic principles.

On the other hand, in order to discuss the inundation depth more detailedly, there are several meth-
ods such as the experimental approach(Rueben et al, 2011; Park et al.,2013) or the numerical simulation
one(Wu,1999; Sakakiyama,2010). After understanding the phenomena of the inundation flow, mini-
mum requirements should be included in the design standard of the tsunami evacuation building and
protective walls. The difference of the maximum inundation depth between 2D and 3D structures is not
discussed yet.

The present work aims at showing first the mechanism of the difference of the maximum inundation
depth between 2D and 3D structures. Second, the experimental formulae to estimate the maximum
inundation depth on walls of the 2D and 3D structures are proposed. Pressure profiles on the wall of
2D and 3D structures are discussed using results of both experiments and numerical simulations.

INUNDATION FLOW NEAR 2D WALL AND AROUND 3D STRUCTURE
Experimental Method

Experiments were carried out using the 2D wave flume as shown in Fig. 1. The wave flume is
205m long, 6.0m deep and 3.4m wide. The bottom topography is not simple consisting of 1/11-, 1/100
and 1/50 uniform slopes. The existing topography model in the wave flume was exploited. The steepest
slope of 1/11 was installed to make the water depth deep near the wave generator as h.=4.23m.

Detail of the site model was shown in Fig. 2. The water depth at the seawall was 0.16m and the
ground level(G.L.) is 0.04m above the still water level. Wave gages were set at several positions as
shown in Figures 1 and Fig. 2. Current meters were at two locations, x=-10m and -5m in the middle
of the water depth, respectively. The data obtained at x=-10m were used as the boundary condition
for the numerical simulation. The axes of coordinates are defined in Fig. 2. Free surface displacement
measured from z=0 is denoted by 1. When discussing the inundation flow, the vertical axis z” is defined
as 7’=z-G.L. and the inundation depth is denoted by ¢ measured from the G.L.
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Figure 4: Pressure sensor

Figure 3: Plane view of cubes on the site model in wave flume .
positions

Figure 3 shows the plane view of location of model structures. Cubes were used as model buildings
of which length is 0.50m. Two kinds of tests were conducted. Run 1 is a test using a single structure as
shown with the blue cube. It was placed in the middle of the wave flume width. The front wall of the
single cube is 1.0m from the sea wall.

Run 2 is a test using two structures in a row with the yellow cubes which stand in the direction of
y-axis, denoted by “front structure” in Fig. 3. Actually there are four yellow cubes but two cubes behind
the front cubes denoted by “rear structure” did not affect the maximum inundation depth of the front
cubes when the condition is supercritical flow. Experiments using these all four cubes were carried out
to verify a numerical simulation results(Sakakiyama, 2010). The grid shows positions where the water
level and velocity were measured but results will not mentioned in this work.

Pressures action on a front wall was measured at the positions as shown in Fig. 4: along five vlerical
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lines covering a half-width of the front wall, at 0.05m interval from the center line to the corner except
that the interval near the corner is 0.04m. The level of the pressure transducers ranges from 0.01m
above the G.L. up to 0.19m at every 0.0lm. The pressure measurement was carried out line by line
because of the limitation of the pressure transducers available, that is, 19 sensors. The highest level of
7’=0.19m was decided by the observation of the run-up on the wall in preliminary experiments.

Side walls of the wave flume reflect flow from the structure. The positions of cubes were deter-
mined so that the side walls and the single cube make the flow regime a mirror image. The mirror image
is true of the two cube case. The blockage ratio denoted by r, which is defined by the ratio of a width
of a structure to that of the flow is r,=0.5/3.4=0.147 of case of a single cube and r,=0.5/1.7=0.294 of
the case of two cubes. The blockage ratio of a 2D structure is 7,=1.0.

The cube is high enough that overtopping is not allowed in the experiments.

2D numerical simulation

Since a 2D structure was not included in the experiments, a numerical simulation was conducted
instead under the same tsunami condition to investigate differences of the inundation flow between 2D
and 3D structures.

The numerical simulation code called CADMUS-SURF/3D(Arikawa et al., 2007) was used. This
code is available for free with the open source. CADMUS-SURF/3D employs the porosity model for
the permeable structure such as rubble mound breakwater in the governing and continuity equations for
one-phase flow. The k-¢ turbulence model is included. The VOF method is used to trace free surface.
The code was parallelized. Now it is used as the so-called Japanese standard in the coastal engineering
to complement physical model tests.

The calculation domain ranges from x=-10m to 1.0m in the horizontal direction and from z=-0.36
to 0.34m in the vertical direction in the wave flume as shown in Fig. 2. The 2D wall is set at x=1.0m.

The following mesh sizes were employed in the x-direction: from x=-10m to -5m the mesh size is
uniform as Ax=0.05m , from x=-5m to Om Ax=0.05m to 0.01m increased in a geometric progression
with the ratio r=1.02 and from x=0m to 1.0m Ax=0.01m uniform. The vertical mesh size Az is uniform
as Az=0.005m.

The measured free surface displacement and velocity at x=-10m were used as the boundary con-
dition. Since the measured results include both the incident and reflected waves, any special treatment
was not required to prevent multi-reflected waves at the boundary condition. The measured free surface
displacement and velocity at x=-5m were used to verify the numerical results as well as those on the
site.

Comparison of flow around 2D and 3D structures

Figures 5 reffig:flowdcube show the inundation flow around a single cube and multiple cubes,
respectively. The tsunami is first dammed up by the seawall and runs down onto the site. There
occurs a critical depth near the edge of the site resulting in the supercritical flow on the site. The flow
with very smooth surface observed in the left part of each photograph indicates that the flow keeps
supercritical. Blue part in the flow was visualized using dye. The Froude number defined by the flow
condition without the structures is 1.5 when the maximum water depth £p=0.073m and its simultaneous
horizontal velocity #=1.28m/s. The flow runs up on the front walls of the single cube and that of the
two cubes.

The water level behind the single cube is quite small. It means that less of the flow does not turn
into the rear of the structure and it keeps the thin layer. Wake is not generated behind the structure in
the supercritical flow.

Fig. 6 shows the inundation flow around multiple cubes. A gap between the front two cubes is
narrower than that of the single cube test. Therefore, the difference between two cases is observed
when comparing the flows between photographs at the bottom in Fig. 5 and Fig. 6. The contour of
maximum water level around the single cube is round in front of the single cube and becomes rather
straight along the stream making the shape of a horseshoe as the blue dye indicates. On the other hand,
as the gap between two cubes becomes smaller, the gap is filled with the flow and the contour of the
maximum water level make almost straight. As seen at the bottom photograph of Fig. 6 the edge of the
reverse flow tends to be nearly straight. The phenomena is quite different from the edge configuration
of the reverse flow from the single cube.

Figure 7 shows the numerical simulation results of the water level change in time and space near
the 2D wall. Although the numerical simulation was carried out in the 2D field, the depiction of the
water level in Fig. 7 is extended to the y direction in the 3D field in order to compare with the flow
around the 3D structures of Figs 5 and 6. Until the inundation flow reaches the 2D wall, the flow
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Figure 5: Inundation flow around a single Figure 6: Inundation flow around multiple
cube(time interval is 1s, one side is 0.50m long) cubes(time interval is 1s, one side is 0.50m long)

is same as that in the case of the 3D structures. Overtopping is not allowed in all three cases. The
inundation flow is completely blocked by the 2D wall while the flow goes through the gap of the 3D
structures. The run up height on the 2D wall keeps going up exceeding the maximum inundation depth
on the 3D structure wall because the flow comes from the upstream and does not go downstream.

Figure 8 shows the water level changes in space and time. The water is dammed up by the seawall
at x=0. Accompanying the critical depth near the seawall of the site, the inundation flow tends to the
supercritical flow. It is dammed up again by the 2D wall. The flow is completely blocked there, runs
up and the upper layer of the flow is reversed by the 2D wall.

Figure 9 shows a snap shot of the velocity field. At this moment when the water level on the wall
is maximum the water just in front of the wall is nearly stagnant. Therefore, the pressure profile is
considered to be hydrostatic in a case of the 2D structure.

In case of the 3D structures, there is a stagnation point on the front wall of the structure but the
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Figure 8: Free surface displacement in front of 2D strucuture.

flow is not stagnant on the whole area of the wall. There occur upward and downward currents along
the wall. Those currents go around the structure and downstream. There is vertical distribution of the
vertical component of the velocity on the wall. That causes the pressure deviation from that of the
hydrostatic pressure. Pressure profile depends on the intensity of vertical component of velocity. That
is the difference of the velocity field and resultant pressure profile between 2D and 3D structures.
Figure 10 shows the comparisons of the pressure profiles among three different structures featured
with the blockage ratio, r,=0.147,0.294 and 1.0. The pressure profiles were chosen when the horizontal



6 COASTAL ENGINEERING 2014

0.3 T T T - -
E
<
o
Tt 0.4m/s
0.2} 1
o lEEEEEN A
N
0.1 k
))))))) [ =625
-8.2 0 0.2 0.4 0.6 0.8 1 1.2
x(m)
Figure 9: Velocity field and water level in front of 2D wall
3 3 3 .
o2 061 h X=0.995m
25t —-020{ 25 065 25 % £ 0rm
——=0.15 —-0.70 %, 0
—=—-0.10 —=—0.75
2 —+-0.05 2 —+-0.80 2
—- 0.0 —-0.85
3 15 t=61.77 SR t=61.645 X 15
£,;=0.073m £,=0.073m
1 1 1
05 05 05
85 0 05 1 15 2 25 3 05 o 15 é 25 3 05 0 I 15 é 25 3
pipgty) atF p/(pgé atf . p/(pgé atf .
(a) One cube, @=2.0 (b) Two cubes in row, =2.4 (c) 2D wall, @=2.9

Figure 10: Pressure profiles and nondimensional maximum indudation depth «.

component of the fluid force was maximum denoted by Fymax.

The pressure profiles were obtained from the center line to the edge on the front wall of the cubes.
The red line with circle in Fig. 10(a) and (b) indicates the profile at the center line while the light blue
line with a plus sign(+) that at to the edge. As Fig. 10(a) shows the pressure profile is somewhat uniform
except that at the edge at the single cube. According to Fig. 10(b), the pressure at the edge at the two
cubes is bigger than that of the single cube. The inundation depth at the edge of the strucuture in case
of two cubes is higher than that in case of the single cube. This result agrees with the observation as
shown in in Fig. 10.

The non- dimensional maximum inundation depth @ = £,,/{p , the ratio of the maximum inundation
depth on the wall ¢, to that without the structure {y, were determined from the pressure profiles from the
results of Fig. 10, a=2 of a single cube, 2.4 of two cubes and 2.9 on the 2D wall. The non-dimensional
maximum inundation depth increases as the blockage rate increases.

Once the maximum inundation depth is given, we need to specify the pressure profile for the design
of structure walls.

The pressure profile of the 2D is simply given as hydrostatic pressure, as mentioned before, the
flow near the 2D wall becomes stagnant.

Those on the wall of the 3D structures are also very close to hydrostatic pressure according to
the experimental results of Fig. 10(a) and (b). However, these results are obtained under the specific
condition of which the Froude number of the inundation flow is 1.5. Flow field around the 3D structure
is not as simple as that near the 2D wall. The pressure profile should be more complicated, if the Froude
number of the inundation flow increases. It seems that the Froude number 1.5 is not large enough to
deform the pressure profile from the hydrostatic pressure.

NUMERICAL EXPERIMENTS FOR INUNDATION DEPTH ON 2D WALL
Numerical simulation

In order to propose an experimental formula for estimating the maximum inundation depth on
the 2D structure, additional numerical simulation was carried out. To amass data on the inundation
depth on the structure, the numerical simulation is powerful tools of which results were already veri-
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Figure 12: Boundary condition of free surface displacement and calculated result.

Table.1 Calculation conditions
1in (M) 0.08, 0.10,0.12
T,(s) 21,42,62
k,(m) 0.0001, 0.002, 0.005 | + smooth

rough turbulent flow | turbulent flow

fied(Sakakiyama, 2010).

Figure 11 shows the set-up for numerical simulation for the purpose. This calculation condition
was made based on the experimental conditions by Asakura et al.(2002). The calculation domain is
130.50m long and 1.37m deep. It is longer than the wave flume length in Asakura et al.(2002) because
multi-reflection waves were observed in a preliminary calculation and it is crucial to prevent them from
running up on the site.

Grid mesh sizes were shown in Fig. 11. In the following regions, the uniform and variable mesh
were employed; from x=-90 to -40m, a uniform mesh of Ax=0.04m, from x=-40 to -10m, variable
mesh of Ax=0.04m to 0.01m with a ratio r=1.001 of a geometric progression. and from x=-10 to 40m,
a uniform mesh of Ax=0.01m. Vertical mesh size are as follows; from z=-0.92 to -0.20m, variable mesh
of Az=0.02m to 0.005m and from z=-0.20 to 0.0.45m, a uniform mesh of Az=0.005.

In the current numerical simulation, the 2D wall was set at x=1, 2, 4, 8,12 and 16m in total six
positions. The origin of x-axis is set at the sea wall and that of z at the still water level. This aimed
at investigating the effects of the Froude number on the pressure on the walls. It is expected that the
inundation flow condition featured by the Froude number changes as it propagates on the site.

Figure 12 shows an example of the time histories of water level of tsunami. Red curve shows the
time history of water level at the boundary condition. Black curve shows that of the calculated one. The
reflected wave coming from the seawall is observed in Fig. 12. Calculations were aborted just before
the multi-reflection wave reached the seawall.

Table.1 shows the calculation conditions. Combinations of the maximum water level 7;,, the half
period T, and the bottom roughness length k, give a calculation conditions. According to the param-
eters, case name was given as i.e., e10p62k01 indicating (7;,, T, ks)=(0.10m, 62s, 0.001m). Calcula-
tions under the smooth turbulent condition were also carried out of which case name are denoted by
kOO such as e12p42k00.
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Figure 13: Spatial change of maximum inundation depth (), horizontal velocity u and Froude
number/F,

Results of inundation flow

Figure 13 shows spatial changes of the maximum inundation depth {y(Fig. 13(a)), the simultaneous
horizontal component of the depth-averaged velocity u(Fig. 13(a)) and the Froude number F,.(Fig.
13(c)), where u and F, are the values obtained at the same time of {y. Even if the boundary conditions
of the tsunami are same such as case e08p42k01, e08p42k20, e08p42kS0, the maximum inundation
depth at x=1m varies as shown in (Fig. 13(a)). This is explained by the effect of the bottom friction
on the tsunami propagation from the offshore boundary to the seawall. As the bottom roughness k;
increases, the maximum water level at the seawall(x=0) increases. The bottom friction affects the
energy flux more than the dissipation of the wave height. As the inundation flow propagates on the site,
the maximum inundation depth {, decreases but the horizontal velocity does not show such a simple
trend. According to the combination of ¢ and u, the Froude number of the inundation flow fluctuates
slightly in the x-direction as shown in Fig. 13(c).

Figure 14 shows a comparison of the numerical simulation results of the configuration of the in-
undation flow. Fig. 14(a) shows the inundation flow without the wall and Fig. 14(b) that with the wall
at x=16m. Due to the existence of the seawall the tsunami is dammed up at the offshore side, x=0m as
it’s running up on the ground of the site. The supercritical flow takes places after running down on the
seawall.

In Fig. 14(b), just after the flow front touched the wall the run up with the thin water layer is
observed on the wall at 7=64s. The momentum at the flow front is large and an impulsive pressure
could occur. The inundation flow is dammed up by the 2-D wall and from =64 to 76s the flow started
returning offshore. It is confirmed that an impact pressure does not exceed the pressure at the maximum
water level.

Figure 15 shows the time histories of the inundation depth ¢, the depth-averaged horizontal velocity
u,, and the specific energy E at x=2m and 16m, respectively. The vertical dashed lines indicate the times
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Figure 15: Inundation depth, velocity and specific energy(e10p62k01)

when the peak values took place of the specific energy, the inundation depth and the horizontal velocity,
respectively. The specific energy E is given by the Eq. (1). While the inundation depth £ at both x=2m
and 16m gradually increases in time, the horizontal velocity shows drastic change in its time history
between x=2m and 16m. The maximum inundation depth decreases as the inundation flow propagates
on land from x=2m to 16m. The maximum velocity at x=2m occurs while that occurs at the current
front at x=16m. This is due to the bottom friction.

E={+u’/(2¢) (D

The Froude number is defined at three phases, at the maximum of the specific energy, of the fluid
force and of the inundation depth. The Froude number at the time when the maximum fluid force F yax
is obtained after the numerical simulation with the wall was carried out. Therefore, from the point of
view of predicting tsunami pressure or force, The Froude number at the maximum fluid force is not
practical but in order to understand the phenomena of the tsunami force acting on the structure, the
timing of the maximum force is included.

As the inundation flow propagates inland, the maximum inundation depth decreases, the simulta-
neous horizontal velocity increase and the resultant Froude number at the maximum specific energy
increases. That occurs due to the change in the phase.

Theoretical consideration on inundation depth on wall

In order to reconsider the factor of three and the constant factors in the new guidelines by NILIM(2012),

a basic theoretical consideration is described as follows: The inundation flow can be assumed as the
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Figure 16: Profiles of maximum pressurez (case e10p21k01, 7;,=0.10m, 7,=62s, k;=0.0001m)

steady flow because tsunami has long wave period. From the energy conservation law given by Eq. (2),
we can obtain a simple relationship between the inundation depth of tsunami without a structure and
that on the structure wall as follws: )
© + L + { = const. 2)
28 pg
The values in the field without structures are denoted by the suffix “0” and those on the wall of
structure denoted by the suffix “w”. The horizontal velocity u,, on the wall of the structure is null as
u,,=0. On the free surface where it is one of streamlines, p = 0, Eq. (2) gives the following result.

u% _ 3
% + 4o = 4w 3)

The non-dimensional maximum inundation depth @ = ¢,,/{p is expressed by a quadratic function
of the Froude number,

u? 1
. R DL I @)
%o 2840 2
It is already confirmed that Eq. (4) is valid for cylindrical structure such as oil tanks(Sakakiyama
et al., 2009). The question is whether Eq. (4) is valid for the 2D wall or not.

Results of maximum inundation depth and pressure profile

Figure 16(a) shows dimensional pressure profiles of at different positions of the 2D wall at x=1,
2,4, 8, 12 and 16m. The horizontal axis shows the pressure head p/(pg). These profiles show a
simple trend: the maximum pressure and the maximum inundation depth decrease as the wall position
changes from x=1m to 16m. It simply means that as the inundation flow propagates into land, the
maximum inundation depth decreases. However, the non-dimensional profiles are not so simple as the
dimensional one. The non-dimensional profiles are not in order of the distance of the wall position. The
Froude number does not change monotonously as the inundation flow propagates toward inland shown
in Fig. 13(c). It is mainly due to the bottom friction. The maximum inundation depth decreases as it
travels toward inland. Therefore, the maximum water level on the wall decreases. However, its velocity
increases. At x=1.0m, pressure profile is not linear. The non-dimensional maximum inundation depth
a = v/l in Fig. 16(b) exceeds three. Three times the maximum water level of inundation flow
was the factor firstly recommended in the guideline of tsunami evacuation buildings (Cabinet Office,
Government of Japan, 2005).

All results on the maximum inundation depth obtained by the present experiments, numerical
simulations are shown in Fig. 17(a). The results of the 3D structures including results of cylindrical
structure(D=0.65m) by Sakakiyama et al.(2009) are also plotted to compare with those of the 2D wall.

First, focusing on the results of the 3D structures of cubes and the data on cylinders with D=0.65m)
with the red hollow circle(Sakakiyama et al, 2009), they are very close to the curve given by Eq. (4)
identified with “Bernoulli steady flow” in the legend.
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Figure 17: Relationship between non-dimensional maximum inundation depth o and Froude number
F,.

The relationship between @ and F, of the experimental formula by Asakura et al.(2002) given by
Eq. (5) is presented with black lines with its error ranges of +50%. Again, this experimental formula
was obtained using both 2D and 3D experimental results. It is valid up to F,=1.6.

The results for the 2D wall show a quite different trend from that of the 3D structure. Although
there is some scatter in the data from -22% to 12% of which range is much smaller than £50%, a linear
function can be obtained as expressed with Eq. (6). This data range is not an error but due to the effect
of the bottom friction on the inundation flow as explained on Fig. 13.

a=1.0+12F, (£50%) (0.1 < F, < 1.6) (5)

a =10+ L4F, (<0.22% ~ 12%) (0.0 < F, <?2) (6)

The important point is that the inundation depth on the 2D wall is higher than that of the 3D
structure when the Froude number is less than about 2 and a half. After the linear relationship was
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proposed by the author(Sakakiyama, 2012), Ikeya et al.(2013) proved that this linear function was
theoretically obtained from the momentum and continuity equations based on the one dimensional
flow.

CONCLUSION

The present work described the tsunami inundation flow around the 3D structures comparing with
the flow in front of the 2D wall. The difference of the maximum inundation depth on the walls was
also presented between the 2D and 3D structures as well as profiles of the pressure acting on the walls.
Primary conclusions are as follows.

1. The maximum inundation depth differs between 2D and 3D structures because of the differences
of mechanism of the run-up on the walls and of flow pattern near the structures.

2. Proposed was the experimental formula to estimate the maximum inundation depth on the 2D
wall as a linear function of the Froude number.

3. The maximum inundation depth on wall of the 3D structure is estimated by the Energy conser-
vation law for the steady flow which is a quadratic function of the Froude number.

4. The maximum inundation depth on the 2D structure is higher than that on the 3D structure when
the Froude number is less than about 2.8.

5. The pressure profile on the 2D wall due to the inundation flow is approximated by the hydrostatic
pressure because the inundation flow is stagnant in front of the 2D wall.

6. The pressure profile on the 3D structure is not necessary approximated by the hydrostatic pres-
sure, although the profiles obtained by the present experiments show nearly the hydrostatic pres-
sure when the Froude number is about 1.5.

The differences of the maximum inundation depth and the pressure profile between the 2D and 3D
structures are described and the formulae were proposed for the maximum inundation depth for these
typical conditions. For the practical use, it is requires to estimate the maximum inundation depth for
an arbitrary width of the structure or an arbitrary blockage ration. It should be done as a future work.
Profile of pressure on a wall of 3D structure should be also investigated under the condition of higher
Froude number.
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